Abstract
Previously, we communicated that rapid and efficient purification of carbohydrates can be achieved by employing sugar-specific chemical ligation with hydrazide-functionalized polymer beads; we termed this process ‘glycoblotting’. The polymer beads are designed to recover carbohydrates by an imine exchange reaction in which hydrazone bonds between the beads and carbohydrates are transferred to oxime bonds between the aminooxy probe and the carbohydrates. To apply our concept to reductive amination with common fluorescent dyes, such as 2-aminobenzamide, the method for releasing the carbohydrates from the beads was examined, and we found that heating the beads with several percentages of acetic acid was efficient. Additionally, we obtained fundamental data on our novel method, such as the recovery ratio, the quantitative capability and the reproducibility. From the results, we concluded that rapid and accurate glycan analysis can be achieved with this novel method. Overall, these novel technologies represent a significant advance toward more efficient glycan analyses, especially by using high-performance liquid chromatography.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473, 4–8 (1999).
Ben-Dor, S., Esterman, N., Rubin, E. & Sharon, N. Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14, 95–101 (2004).
Taylor, M. E. & Drickamer, K. Introduction to Glycobiology (Oxford University Press Inc., New York, 2003).
Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).
Spiro, R. G. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol. Life Sci. 61, 1025–1041 (2004).
Allen, A. C., Harper, S. J. & Feehally, J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin. Exp. Immunol. 100, 470–474 (1995).
Tomana, M., Matousovic, K., Julian, B. A., Radl, J., Konecny, K. & Mestecky, J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52, 509–516 (1997).
Aoyagi, Y. Carbohydrate-based measurements on alpha-fetoprotein in the early diagnosis of hepatocellular carcinoma. Glycoconj. J. 12, 194–199 (1995).
Seko, A., Kataoka, F., Aoki, D., Sakamoto, M., Nakamura, T., Hatae, M., Yonezawa, S. & Yamashita, K. N-acetylglucosamine 6-o-sulfotransferase-2 as a tumor marker for uterine cervical and corpus cancer. Glycoconj. J. 26, 1065–1073 (2009).
Abelev, G. I., Perova, S. D., Khramkova, N. I., Postnikova, Z. A. & Irlin, I. S. Production of embryonal alpha-globulin by transplantable mouse hepatomas. Transplantation 1, 174–180 (1963).
Egan, M. L., Pritchard, D. G., Todd, C. W. & Go, V. L. Isolation and immunochemical and chemical characterization of carcinoembryonic antigen-like substances in colon lavages of healthy individuals. Cancer Res. 37, 2638–2643 (1977).
Fritsche, R. & Mach, J. P. Isolation and characterization of carcinoembryonic antigen (CEA) extracted from normal human colon mucosa. Immunochemistry 14, 119–127 (1977).
Haynes, P. A., Gooley, A. A., Ferguson, M. A., Redmond, J. W. & Williams, K. L. Post-translational modifications of the Dictyostelium discoideum glycoprotein PsA. Glycosylphosphatidylinositol membrane anchor and composition of O-linked oligosaccharides. Eur. J. Biochem. 216, 729–737 (1993).
Nishio, K. Biomarkers for cancer molecular target therapy. Jpn. J. Clin. Oncol. 41, 95–100 (2010).
Thompson, J. A., Pande, H., Paxton, R. J., Shively, L., Padma, A., Simmer, R. L., Todd, C. W., Riggs, A. D. & Shively, J. E. Molecular cloning of a gene belonging to the carcinoembryonic antigen gene family and discussion of a domain model. Proc. Natl. Acad. Sci. USA 84, 2965–2969 (1987).
Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H. & Presta, L. G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).
Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N. & Shitara, K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).
Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., Kim, Y. G., Henry, G. W., Shadick, N. A., Weinblatt, M. E., Lee, D. M., Rudd, P. M. & Dwek, R. A. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008).
Furukawa, J., Shinohara, Y., Kuramoto, H., Miura, Y., Shimaoka, H., Kurogochi, M., Nakano, M. & Nishimura, S.- I. Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal. Chem. 80, 1094–1101 (2008).
Bigge, J. C., Patel, T. P., Bruce, J. A., Goulding, P. N., Charles, S. M. & Parekh, R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995).
Townsend, R. R., Lipniunas, P. H., Bigge, C., Ventom, A. & Parekh, R. Multimode high-performance liquid chromatography of fluorescently labeled oligosaccharides from glycoproteins. Anal. Biochem. 239, 200–207 (1996).
Hase, S., Hara, S. & Matsushima, Y. Tagging of sugars with a fluorescent compound, 2-aminopyridine. J. Biochem. 85, 217–220 (1979).
Kondo, A., Suzuki, J., Kuraya, N., Hase, S., Kato, I. & Ikenaka, T. Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric. Biol. Chem. 54, 2169–2170 (1990).
Nakagawa, H., Kawamura, Y., Kato, K., Shimada, I., Arata, Y. & Takahashi, N. Identification of neutral and sialyl N-linked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226, 130–138 (1995).
Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226, 139–146 (1995).
Nishimura, S.- I., Niikura, K., Kurogochi, M., Matsushita, T., Fumoto, M., Hinou, H., Kamitani, R., Nakagawa, H., Deguchi, K., Miura, N., Monde, K. & Kondo, H. High-throughput protein glycomics: combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. Angew. Chem. Int. Ed. Engl. 44, 91–96 (2005).
Nishimura, S.- I. Toward automated glycan analysis. Adv. Carbohydr. Chem. Biochem. 65, 211–264 (2011).
Niikura, K., Kamitani, R., Kurogochi, M., Uematsu, R., Shinohara, Y., Nakagawa, H., Deguchi, K., Monde, K., Kondo, H. & Nishimura, S.- I. Versatile glycoblotting nanoparticles for high-throughput protein glycomics. Chem. Eur. J. 11, 3825–3834 (2005).
Shimaoka, H., Kuramoto, H., Furukawa, J., Miura, Y., Kurogochi, M., Kita, Y., Hinou, H., Shinohara, Y. & Nishimura, S. One-pot solid-phase glycoblotting and probing by transoximization for high-throughput glycomics and glycoproteomics. Chem. Eur. J. 13, 1664–1673 (2007).
Shinohara, Y., Furukawa, J., Niikura, K., Miura, N. & Nishimura, S. Direct N-glycan profiling in the presence of tryptic peptides on MALDI-TOF by controlled ion enhancement and suppression upon glycan-selective derivatization. Anal. Chem. 76, 6989–6997 (2004).
Miura, Y., Shinohara, Y., Furukawa, J., Nagahori, N. & Nishimura, S.- I. Rapid and simple solid-phase esterification of sialic acid residues for quantitative glycomics by mass spectrometry. Chem. Eur. J. 13, 4797–4804 (2007).
Hirose, K., Amano, M., Hashimoto, R., Lee, Y. C. & Nishimura, S.- I. Insight into glycan diversity and evolutionary lineage based on comparative Avio-N-glycomics and sialic acid analysis of 88 egg whites of galloanserae. Biochemistry (Mosc.) 50, 4757–4774 (2011).
Kamoda, S., Nakano, M., Ishikawa, R., Suzuki, S. & Kakehi, K. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography: a method which can recover free oligosaccharides after analysis. J. Proteome Res. 4, 146–152 (2005).
Guile, G. R., Rudd, P. M., Wing, D. R., Prime, S. B. & Dwek, R. A. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240, 210–226 (1996).
Campbell, M. P., Royle, L., Radcliffe, C. M., Dwek, R. A. & Rudd, P. M. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24, 1214–1216 (2008).
Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T. & Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998).
Chou, H. H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K. L., Muchmore, E. A., Nelson, D. L., Warren, S. T. & Varki, A. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA 95, 11751–11756 (1998).
Hayakawa, T., Satta, Y., Gagneux, P., Varki, A. & Takahata, N. Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene. Proc. Natl. Acad. Sci. USA 98, 11399–11404 (2001).
Kita, Y., Miura, Y., Furukawa, J., Nakano, M., Shinohara, Y., Ohno, M., Takimoto, A. & Nishimura, S.- I. Quantitative glycomics of human whole serum glycoproteins based on the standardized protocol for liberating N-glycans. Mol. Cell Proteomics 6, 1437–1445 (2007).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Abe, M., Shimaoka, H., Fukushima, M. et al. A cross-linked polymer possessing a high density of hydrazide groups: high-throughput glycan purification and labeling for high-performance liquid chromatography analysis. Polym J 44, 269–277 (2012). https://doi.org/10.1038/pj.2011.125
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2011.125