Abstract
The effect of polycarbonate (PC) matrix viscosity on the thermal conductivity of a PC/vapor-grown carbon fiber (VGCF) composite was investigated in this study in terms of the rheological properties of the PC/VGCF using two types of VGCF. Two types of VGCF, which have different aspect ratios (VGCF-h has an aspect ratio of 40, whereas VGCF-s has an aspect ratio of 100), were added to two types of PC with different viscosities. The storage modulus (G′) and loss modulus (G″) of the PC slightly increased and thermal conductivity gradually increased with the content of VGCF-h. By adding VGCF-s to low-viscosity PC, rheological properties originating in the network structure were observed. Thermal conductivity of low-viscosity PC drastically increased with the content of VGCF-s. By analyzing the length of VGCF in each composite, we found that the length of VGCF decreased with mixing. It was also easy to shorten VGCF in high-viscosity PC. We clarified that the thermal conductivity of PC/VGCF could be controlled with the viscosity of the polymer matrix because the spread of the network structure of VGCF and/or the breaking of VGCF depended on the viscosity of the polymer matrix.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Leyland, N. S., Evans, J. R. & Harrison, D. J. Lithographic printing of ceramics. J. Eur. Ceram. Soc. 22, 1–13 (2002).
Lin, J. C. & Wang, C. Y. Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater. Chem. Phys. 45, 136–144 (1996).
Goto, T. & Otsubo, Y. Rheology control of ceramic slurries for sintering of thin films. Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn) 29, 205–210 (2001) (in Japanese).
Ray, S. S., Yamada, K., Okamoto, M., Fujimoto, Y., Ogami, A. & Ueda, K. New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 44, 6633–6646 (2003).
Todoroki, A., Samejima, Y., Hirano, Y. & Matsuzaki, R. Piezoresistivity of unidirectional carbon/epoxy composites for multiaxial loading. Compos. Sci. Technol. 69, 1841–1846 (2009).
Pitarresi, G. & Galietti, U. A quantitative analysis of the thermoelastic effect in CFRP composite materials. Strain 46, 446–459 (2010).
Koyanagi, J., Yoneyama, S., Nemoto, A. & Melo, J. D. D. Time and temperature dependence of carbon/epoxy interface strength. Compos. Sci. Technol. 70, 1395–1400 (2010).
Futaba, D. N., Hata, K., Yamada, T., Mizuno, K., Yumura, M. & Iijima, S. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005).
Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M. & Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).
Son, S. Y., Lee, D. H., Kim, S. D., Sung, S. W., Park, Y. S. & Han, J. H. Synthesis of multi-walled carbon nanotube in a gas-solid fluidized bed. Korean J. Chem. Eng. 23, 838–841 (2006).
Wang, Z., Wu, Q., Zhang, F.- Y. & Cui, Y.- Y. Synthesis of multi-walled carbon nanotube bundles with uniform diameter. Mater. Lett. 61, 1955–1958 (2007).
Choi, Y. K., Sugimoto, K. I., Song, S. M. & Endo, M. Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets. Mater. Lett. 59, 3514–3520 (2005).
Takahashi, T., Yonetake, K., Koyama, K. & Kikuchi, T. Polycarbonate crystallization by vapor-grown carbon fiber with and without magnetic field. Macromol. Rapid Commun. 24, 763–767 (2003).
Endo, M., Kim, Y. A., Hayashi, T., Nishimura, K., Matusita, T., Miyashita, K. & Dresselhaus, M. S. Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39, 1287–1297 (2001).
Chung, D. D. L. Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon 39, 1119–1125 (2001).
Choi, Y. K., Sugimoto, K. I., Song, S. M. & Endo, M. Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Compos. Pt A-Appl. Sci. Manuf. 37, 1944–1951 (2006).
Higgins, B. A. & Brittain, W. J. Polycarbonate carbon nanofiber composites. Eur. Polym. J. 41, 889–893 (2005).
Koyama, T., Tanoue, S. & Iemoto, Y. Preparation and properties of polypropylene/vapor grown carbon fiber composite monofilaments by melt compounding. J. Text. Eng. 55, 73–78 (2009).
Koyama, T., Tanoue, S. & Iemoto, Y. Effect if processing conditions on dispersion of vapor grown carbon fiber in a polyamide 6 and the crystalline structure of their composites by melt compounding. Int. Polym. Process 25, 181–187 (2010).
Takase, H., Mikata, Y., Matsuda, S. & Murakami, A. Dispersion of carbon-nanotubes in a polymer matrix by a twin screw extruder. SEIKEI KAKOU 14, 126–131 (2002)(in Japanese).
Takase, H., Furukawa, M., Kishi, H. & Murakami, A. Dispersion of carbon-nanotubes in a polymer matrix by a twin-screw extruder II. SEIKEI KAKOU 17, 50–54 (2005)(in Japanese).
Pötschke, P., Fornes, T. D. & Paul, D. R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247–3255 (2002).
Kinloch, I. A., Roberts, S. A. & Windle, A. H. A rheological study of concentrated aqueous nanotube dispersions. Polymer 43, 7483–7491 (2002).
Mason, S. G. Some factors involved in the flocculation of pulp suspensions and the formation of paper. Pulp Paper Mag. Can. 51, 94–98 (1950).
Kurath, S. F. The network and viscoelastic properties of wet pulp (I): dynamic mechanical properties. Tappi 42, 953–959 (1959).
Thalén, N. & Wahren, D. Shear modulus and ultimate shear strength of some paper pulp fibre networks. Svensk Papperstidn. 67, 259–264 (1964).
Damani, R., Powell, R. L. & Hagen, N. Viscoelastic characterization of medium consistency pulp suspensions. Can. J. Chem. Eng. 71, 676–684 (1993).
Tatsumi, D., Ishioka, S. & Matsumoto, T. Effect of particle and salt concentrations on the rheological properties of cellulose fibrous suspensions. Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn) 27, 243–248 (1999).
Tatsumi, D. & Ishioka, S. Matsumoto, effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn) 30, 27–32 (2002).
Tatsumi, D. Rheology of cellulose fiber disperse systems and cellulose solutions. Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn) 35, 251–256 (2007) (in Japanese).
de Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979).
Hong, J., Lee, J., Jung, D. & Shim, S. E. Thermal and electrical conduction behavior of alumina and multiwalled carbon nanotube incorporated poly(dimethyl siloxane). Thermochimica Acta. 512, 34–39 (2010).
Sato, E., Takahashi, T., Natsume, T. & Koyama, K. Development of dispersion and length-evaluation methods of vapor-grown carbon fiber. TANSO 209, 159–164 (2003) (in Japanese).
Sato, E., Takahashi, T. & Koyama, K. Comparison of the length of vapor-grown carbon fiber before and after mixing process. Kobunshi Ronbunshu. 61, 144–148 (2004) (in Japanese).
Nithikarnjanatharn, J., Ueda, H., Tanoue, S., Uematsu, H. & Iemoto, Y. Properties of poly(carbonate)/vapor-grown carbon fiber composite prepared by melt compounding. J. Text. Eng. 57, 97–106 (2011).
Acknowledgements
We thank Mr Yuki Kurome, a student at the University of Fukui, Japan, for measuring the length distributions of VGCF in PC/VGCF composites and Teijin Chemicals, Japan, for supplying the PC resin.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Nithikarnjanatharn, J., Ueda, H., Tanoue, S. et al. The rheological behavior and thermal conductivity of melt-compounded polycarbonate/vapor-grown carbon fiber composites. Polym J 44, 427–432 (2012). https://doi.org/10.1038/pj.2011.149
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2011.149
Keywords
This article is cited by
-
Effect of carbon fiber on the capillary extrusion behaviors of high-density polyethylene
Polymer Journal (2013)