Abstract
The movement toward a recycling-based society through the essential development of recyclable materials alongside technologies for controlling recycling is reviewed. Recently, there has been progress in producing various polymers and technologies with the aim of achieving circulative utilization. For example, the upgrade recycling of commodity plastics, selective transformation of engineering plastics, selective depolymerization of various polymers in supercritical fluids, crosslinking–decrosslinking control using reversible reactions and developments in biomass-based recyclable polymers. Despite great strides taken in the effectiveness, efficiency and precision of these polymers and technologies, further improvements will be required to meet the practical requirements of a responsible sustainable system for the recycling of containers, packages, electric household appliances and end-of-life vehicles all of which are operated in compliance with the recycling laws of Japan.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Research Group on Green Chemistry (ed.) Chemistry and Technology for Feedstock Recycling of Plastics (The Society of Polymer Science, Japan, 2010).
Mita, I. Effect of structure on degradation and stability of polymers. in Aspect of Degradation and Stabilization of Polymers (ed. Jellinek, H. H. G.) Ch. 6, 247–294 (Elsevier, Amsterdam, 1978).
Leonard, J. Heats and entropies of polymerization, ceiling temperatures, equilibrium monomer concentrations, and polymerizability of heterocyclic compounds. in Polymer Handbook Fourth Edition (eds, Brandrup, J., Immergut, E. H., & Grulke, E. A.) Ch. II, 363–414 (Wiley Interscience, New York, 1999).
Zassa, M. D., Favero, M. & Canu, P. Two-steps selective thermal depolymerization of polyethylene. 1: Feasibility and effect of devolatilization heating policy. J. Anal. Appl. Pyrolysis 87, 248–255 (2010).
Westerhout, R. W. J., Kuipers, J. A. M. & van Swaaij, W. P. M. Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis. Ind. Eng. Chem. Res. 37, 2293–2300 (1998).
Tsuji, T., Tanaka, Y., Shibata, T., Uemaki, O. & Itoh, H. Two-stage thermal gasification of polyethylene. Nippon Kagaku Kaishi 1999, 759–763 (1999).
Kaminsky, W., Schlesselmann, B. & Simon, C. Olefins from polyolefins and mixed plastics by pyrolysis. J. Anal. Appl. Pyrolysis 32, 19–27 (1995).
Scott, D. S., Czernik, S. R., Piskorz, J. & Radlein, D. S. A. G. Fast pyrolysis of plastic wastes. Energy Fuels 4, 407–411 (1990).
Westerhout, R. W. J., Kuipers, J. A. M. & van Swaaij, W. P. M. Experimental determination of the yield of pyrolysis products of polyethene and polypropene. Influence of reaction conditions. Ind. Eng. Chem. Res. 37, 841–847 (1998).
Westerhout, R. W. J., Kuipers, J. A. M. & van Swaaij, W. P. M. Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene. Ind. Eng. Chem. Res. 37, 2316–2322 (1998).
Sawaguchi, T., Suzuki, K., Kuroki, T. & Ikemura, T. Studies on thermal degradation of synthetic polymers. XV. Estimation of the product yield on the basis of intensity function for thermal gasification of isotactic and atactic polypropylenes. J. Appl. Polym. Sci. 26, 1267–1274 (1981).
Negelein, D. L., Lin, R. & White, R. L. Effects of catalyst acidity and HZSM-5 channel volume on polypropylene cracking. J. Appl. Polym. Sci. 67, 341–348 (1998).
Sinn, H., Kaminsky, W. & Janning, J. Processing of plastic waste and scrap tires into chemical raw materials, especially by pyrolysis. Angew. Chem. Int. Ed. Engl. 15, 660–672 (1976).
Tsuchiya, K. & Sakai, T. Extruder type pyrolysis plant for waste plastics. J. S. W. Tech. Rev. 35, 66–74 (1974).
Zhang, Z., Hirose, T., Nishio, S., Morioka, Y., Azuma, N., Ueno, A., Ohkita, H. & Okada, M. Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind. Eng. Chem. Res. 34, 4514–4519 (1995).
Audisio, G. & Bertini, F. New chemical recycling methodologies: hydrous pyrolysis to recover monomers from polyolefins. Macromol. Symp. 135, 175–182 (1998).
Kruse, T. M., Woo, O. S., Wong, H.- W., Khan, S. S. & Broadbelt, L. J. Mechanistic modeling of polymer degradation: a comprehensive study of polystyrene. Macromolecules 35, 7830–7844 (2002).
Sawaguchi, T. & Seno, M. Controlled thermal degradation of polystyrene leading to selective formation of end-reactive oligomers. J. Polym. Chem. Part A Polym. Chem. 36, 209–213 (1998).
Vicente, G., Aguado, J., Serrano, D. P. & Sánchez, N. HDPE chemical recycling promoted by phenol solvent. J. Anal. Appl. Pyrolysis 85, 366–371 (2009).
Uemichi, Y., Takuma, K. & Ayame, A. Chemical recycling of poly(ethylene) by catalytic degradation into aromatic hydrocarbons using H-Ga-silicate. Chem. Commun. 1998, 1975–1976 (1998).
Takuma, K., Uemichi, Y., Sigioka, M. & Ayame, A. A novel technology for chemical recycling of low-density polyethylene by selective degradation into lower olefins using H-borosilicate as a catalyst. Chem. Lett. 2001, 288–289 (2001).
Takuma, K., Uemichi, Y., Sigioka, M. & Ayame, A. Production of aromatic hydrocarbons by catalytic degradation of polyolefins over H-gallosilicate. Ind. Eng. Chem. Res. 40, 1076–1082 (2001).
Uemichi, Y., Seino, A., Nishizaki, T., Kanda, Y. & Sugioka, M. Degradation of polyethylene into petrochemicals using chlorine tolerant catalyst. Polym. Prepr. Jpn 58, 5377–5378 (2009).
Sawaguchi, T., Ikemura, T. & Seno, M. Preparation of α,ω-diisopropenyloligopropylene by thermal degradation of isotactic polypropylene. Macromolecules 28, 7973–7978 (1995).
Sawaguchi, T., Saito, H., Yano, S. & Seno, M. An effective method for selective formation of telechelic oligomers by controlled thermal degradation of polypropylenes. Polym. Degrad. Stab. 72, 383–391 (2001).
Hagiwara, T., Saitoh, H., Tobe, A., Sasaki, D., Yano, S. & Sawaguchi, T. Functionalization and applications of telechelic oligopropylenes: preparation of R,ö-dihydroxy- and diaminooligopropylenes. Macromolecules 38, 10373–10378 (2005).
Sasaki, D., Suzuki, Y., Hagiwara, T., Yano, S. & Sawaguchi, T. Synthesis and applications of triblock and multiblock copolymers using telechelic oligopropylene. Polymer 49, 4094–4100 (2008).
Yoshida, M. Oxidative degradation. in Chemistry and Technologies for Feedstock Recycling of Plastics (ed. Research Group on Green Chemistry) Ch. 2–4, 28–36 (The Society of Polymer Science, Japan, 2010).
Shiono, T., Naga, N. & Soga, K. Synthesis of α,ω-divinylpolyethylene-like polymers from cis-1,4-polybutadiene using partial hydrogenation and metathesis degradation with ethylene. Macromol. Rapid Commun. 14, 323–327 (1993).
Shiono, T., Yoshino, O. & Ikeda, T. Synthesis and oxidative degradation of poly(ethene-ran-1,3-butadiene). Macromol. Rapid Commun. 21, 1297–1301 (2000).
Ishihara, T. & Shiono, T. Synthesis of poly(propylene-ran-1,3-butadiene) and its metathesis degradation with ethylene. Macromolecules 36, 9675–9677 (2003).
Lucas, F., Peruch, F., Carlotti, S., Deffieux, A., Leblanc, A. & Boisson, C. Synthesis of dihydroxy poly(ethylene-co-butadiene) via metathetical depolymerization: kinetic and mechanistic aspects. Polymer 49, 4935–4941 (2008).
Goto, M. Chemical recycling of plastics using sub- and supercritical fluids. J. Supercrit. Fluids 47, 500–507 (2009).
Nakagawa, T., Hirota, S., Shibata, K., Yabunouchi, N., Yasuda, Y., Itoh, T., Hidaka, M., Matsui, J., Sato, M., Izumitani, T. & Imanari, N. Enhanced recycling of FRP using subcritical water (2) (pilot test of styrene-fumaric acid copolymer (SFC) separation and modification process. Polym. Prepr. Jpn 58, 5411–5412 (2009).
Suyama, K., Kubota, M., Shirai, M. & Yoshida, H. Chemical recycling of networked polystyrene derivatives using subcritical water in the presence of an aminoalcohol. Polym. Degrad. Stab. 95, 1588–1592 (2010).
Goto, T., Inoue, G., Okajima, I., Sako, T. & Amano, O. Investigation on energy profit ratio of the recycling of silane cross-linked polyethylene using supercritical alcohol. Hitachi Densen 28, 1-23–1-28 (2009).
Yoshida, M., Kobayashi, R., Goto, T. & Yamazaki, T. Plasticity recovery of crosslinked polyethylene by selective oxidation in supercritical CO2. Polym. Prepr. Jpn 58, 5397–5398 (2009).
Matsumoto, T., Motokucho, S., Kojio, K. & Furukawa, M. Development of hydrolysis method of persistent polyurea using supercritical carbon dioxide in the absence of catalyst. Polym. Prepr. Jpn 58, 5389–5390 (2009).
Sasaki, M., Adschiri, T. & Arai, K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE J. 50, 192–202 (2004).
Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T. & Arai, K. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluids 13, 261–268 (1998).
Ichiyanagi, H., Furukawa, M., Kojio, K. & Motokucho, S. Saccharification behavior of microcrystalline cellulose under the high-pressure carbon dioxide including supercritical condition in the absence of catalyst. Polym. Prepr. Jpn 58, 5387–5388 (2009).
Goto, M., Koyamoto, H., Kodama, A., Hirose, T., Nagaoka, S. & McCoy, B. J. Degradation kinetics of polyethylene terephthalate in supercritical methanol. AIChE J. 48, 136–144 (2002).
Genta, M., Yano, F., Kondo, Y., Matsubara, W. & Oomoto, S. Development of chemical recycling process for post-consumer PET bottles by methanolysis in supercritical methanol. Mitsubishi Heavy Industries, Ltd., Technical Review 40, 1–4 (2003).
Noritake, A., Hori, M., Shigematsu, M. & Tanahashi, M. Recycling of polyethylene terephthalate using high-pressure steam treatment. Polym. J. 40, 498–502 (2008).
Zope, V. S. & Mishra, S. Kinetics of neutral hydrolytic depolymerization of PET (polyethylene terephthalate) waste at higher temperature and autogenious pressures. J. Appl. Polym. Sci. 110, 2179–2183 (2008).
Grause, G., Kaminsky, W. & Fahrbach, G. Hydrolysis of poly(ethylene terephthalate) in a fluidised bed reactor. Polym. Degrad. Stab. 85, 571–575 (2004).
Yoshioka, T., Handa, T., Grause, G., Lei, Z., Inomata, H. & Mizoguchi, T. Effects of metal oxides on the pyrolysis of poly(ethylene terephthalate). J. Anal. Appl. Pyrolysis 73, 139–144 (2005).
Yoshioka, T., Grause, G., Otani, S. & Okuwaki, A. Selective production of benzene and naphthalene from poly(butylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate) by pyrolysis in the presence of calcium hydroxide. Polym. Degrad. Stab. 91, 1002–1009 (2006).
Liu, F.- S., Li, Z., Yu, S.- T., Cui, X., Xie, C.- X. & Ge, X.- P. Methanolysis and hydrolysis of polycarbonate under moderate conditions. J. Polym. Environ. 17, 208–211 (2009).
Jie, H., Ke, H., Qing, Z., Lei, C., Yongqiang, W. & Zibin, Z. Study on depolymerization of polycarbonate in supercritical ethanol. Polym. Degrad. Stab. 91, 2307–2314 (2006).
Watanabe, M., Matsuo, Y., Matsushita, T., Inomata, H., Miyake, T. & Hironaka, K. Chemical recycling of polycarbonate in high pressure high temperature steam at 573 K. Polym. Degrad. Stab. 94, 2157–2162 (2009).
Hata, S., Goto, H., Yamada, E. & Oku, A. Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 43, 2109–2116 (2002).
Chino, K. & Ashiura, M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 34, 9201–9204 (2001).
Aumsuwan, N. & Urban, M. W. Studies on thermal degradation of synthetic polymers. XV. Estimation of the product yield on the basis of intensity function for thermal gasification of isotactic and atactic polypropylenes. Polymer 50, 33–36 (2009).
Peterson, A. M., Jensen, R. E. & Palmese, G. R. Reversibly cross-linked polymer gels as healing agents for epoxy-amine thermosets. ACS Appl. Mater. Interfaces 1, 992–995 (2009).
Kavitha, A. A. & Singha, N. K. Smart ‘All Acrylate’ ABA triblock copolymer bearing reactive functionality via atom transfer radical polymerization (ATRP): demonstration of a ‘Click Reaction’ in thermoreversible property. Macromolecules 43, 3193–3205 (2010).
Yoshie, N., Sukarsaatmadja, P. & Ishida, K. Functionalization of network polymers by using photo-reversible reaction. Polym. Prepr. Jpn 58, 5603–5604 (2009).
Deng, G., Tang, C., Li, F., Jiang, H. & Chen, Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43, 1191–1194 (2010).
Ishida, K. & Yoshie, N. Synthesis of readily recyclable biobased plastics by Diels-Alder reaction. Macromol. Biosci. 8, 916–922 (2008).
Ishida, K. & Yoshie, N. Two-way conversion between hard and soft properties of semicrystalline cross-linked polymer. Macromolecules 41, 4753–4757 (2008).
Ishida, K., Nishiyama, Y., Michimura, Y., Oya, N. & Yoshie, N. Hard-soft conversion in network polymers: effect of molecular weight of crystallizable prepolymer. Macromolecules 43, 1011–1015 (2010).
Inoue, K., Yamashiro, M. & Iji, M. Recyclable shape-memory polymer: poly(lactic acid) crosslinked by a thermoreversible Diels-Alder reaction. J. Appl. Polym. Sci. 112, 876–885 (2009).
Donner, M. & Kaminsky, W. Chemical recycling of cycloolefin-copolymers (COC) in a fluidized-bed reactor. J. Anal. Appl. Pyrolysis 74, 238–244 (2005).
Endo, T., Suzuki, T., Sanda, F. & Takata, T. A novel network polymer a linear polymer reversible system. A new cross-linking system consisting of a reversible cross-linking-depolymerization of a polymer having a spiro orthoester moiety in the side chain. Macromolecules 29, 4819 (1996).
Hitomi, M., Sanda, F. & Endo, T. Reversible crosslinking-decrosslinking of polymers having bicycle orthoester moieties in the side chains. Macromol. Chem. Phys. 200, 1268–1273 (1999).
Ruckenstein, E. & Chen, X. An ambient self-curable latex based on colloidal dispersion in water of two functionalized polymers and the thermally reversible crosslinked films generated. An ambient self-curable latex based on colloidal dispersion in water of two functionalized polymers and the thermally reversible crosslinked films generated. J. Polym. Sci. Part A Polym. Chem. 39, 389–397 (2001).
Ruckenstein, E. & Chen, X. Covalent cross-linking of polymers through ionene formation and their thermal de-cross-linking. Covalent cross-linking of polymers through ionene formation and their thermal de-cross-linking. Macromolecules 33, 8992–9001 (2000).
Kojima, M., Tosaka, M. & Ikeda, Y. Chemical recycling of sulfur-cured natural rubber using supercritical carbon dioxide. Green Chem. 6, 84–89 (2004).
Kojima, M., Kohjiya, S. & Ikeda, Y. Role of supercritical carbon dioxide for selective impregnation of decrosslinking reagent into isoprene rubber vulcanizate. Polymer 46, 2016–2019 (2005).
Kojima, M., Tosaka, M., Ikeda, Y. & Kohjiya, S. Devulcanization of carbon black filled natural rubber using supercritical carbon dioxide. J. Appl. Polym. Sci. 95, 137–143 (2005).
Hashimoto, T., Mori, H. & Urushisaki, M. Poly(tetramethylene ether) glycol containing acetal linkages: New PTMG-based polyol for chemically recyclable polyurethane thermoplastic elastomer. J. Polym. Sci. Part A Polym. Chem. 46, 1893–1901 (2008).
Hashimoto, T. Synthesis and chemical recycling of polyurethane materials containing acetal linkages. Kobunshi 57, 350–353 (2008).
Higaki, Y., Otsuka, H. & Takahara, A. A thermodynamic polymer cross-linking system based on radically exchangeable covalent bonds. Macromolecules 39, 2121–2125 (2006).
Amamoto, Y., Higaki, Y., Matsuda, Y., Otsuka, H. & Takahara, A. Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. J. Am. Chem. Soc. 129, 13298–13304 (2007).
Kanazawa, H., Higuchi, M. & Yamamoto, K. Synthesis and chemical degradation of thermostable polyamide with imine bond for chemical recycling. Macromolecules 39, 138–144 (2006).
van der Mee, M. A. J., Goossens, J. G. P. & van Duin, M. Thermoreversible covalent crosslinking of maleated ethylene/propylene copolymers with diols. J. Polym. Sci. Part A Polym. Chem. 46, 1810–1825 (2008).
Chaudhary, B. I., Peterson, T. H., Wasserman, E., Costeux, S., Klier, J. & Pasztor Jr, A. J. Thermoreversible crosslinking of polyethylene enabled by free radical initiated functionalization with urethane nitroxyls. Polymer 51, 153–163 (2010).
Nagata, M. & Yamamoto, Y. Synthesis and characterization of photocrosslinked poly(ɛ-caprolactone)s showing shape-memory properties. J. Polym. Sci. Part A Polym. Chem. 47, 2422–2433 (2009).
Shirai, M., Morishita, S., Okamura, H. & Tsunooka, M. Photo-cross-linkable polymers with thermally degradable property. Chem. Mater. 14, 334–340 (2002).
Shin, Y.- D., Kawaue, A., Okamura, H. & Shirai, M. Novel thermally degradable diepoxy crosslinkers containing sulfonate ester groups for photo-crosslinking. Polym. Degrad. Stab. 86, 153–158 (2004).
Shirai, M. Reworkable UV curing materials. Prog. Org. Coat. 58, 158–165 (2007).
Johnson, J. A., Finn, M. G., Koberstein, J. T. & Turro, N. J. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-click reaction: precursors to photodegradable model networks. Macromolecules 40, 3589–3598 (2007).
Iwamura, T. & Sakaguchi, M. A novel de-cross-linking system from cross-linked polymer to linear polymer utilizing pressure or visible light irradiation. Macromolecules 41, 8995–8999 (2008).
Nishida, H., Andou, Y., Watanabe, K., Arazoe, Y., Ide, S. & Shirai, Y. Poly(tetramethyl glycolide) from renewable carbon, a racemization-free and controlled depolymerizable polyester. Macromolecules 44, 12–13 (2011).
Kawasaki, N., Nakayama, A., Yamano, N., Takeda, S., Kawata, Y., Yamamoto, N. & Aiba, S. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 46, 9987–9993 (2005).
Fuji, M. & Yamamoto, M. (Mitsubishi Chemical), Method for producing polycarbonate using dihydroxy compound WO/2010/061928 (27 November 2009).
Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymer. Polym. Degrad. Stab. 59, 145–152 (1998).
Vink, E. T. H., Rabago, K. R., Glassner, D. A. & Gruber, P. R. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polym. Degrad. Stab. 80, 403–419 (2003).
Mori, T., Nishida, H., Shirai, Y. & Endo, T. Effects of chain end structures on pyrolysis of poly(L-lactic acid) containing tin atoms. Polym. Degrad. Stab. 84, 243–251 (2004).
Fan, Y., Nishida, H., Shirai, Y. & Endo, T. Thermal stability of poly (L-lactide): influence of end protection by acetyl group. Polym. Degrad. Stab. 84, 143–149 (2004).
Fan, Y., Nishida, H., Shirai, Y. & Endo, T. Control of racemization for feedstock recycling of PLLA. Green Chem. 5, 575–579 (2003).
Fan, Y., Nishida, H., Mori, T., Shirai, Y. & Endo, T. Thermal degradation of poly (L-lactide): effect of alkali earth metal oxides for selectiveL,L-lactide formation. Polymer 45, 1197–1205 (2004).
Nishida, H., Fan, Y., Mori, T., Oyagi, N., Shirai, Y. & Endo, T. Feedstock recycling of flame-resisting poly(lactic acid)/aluminum hydroxide composite to L,L-lactide. Ind. Eng. Chem. Res. 44, 1433–1437 (2005).
Motoyama, T., Tsukegi, T., Shirai, Y., Nishida, H. & Endo, T. Effects of MgO catalyst on depolymerization of poly-L-lactic acid to L,L-lactide. Polym. Degrad. Stab. 92, 1350–1358 (2007).
Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y. & Endo, T. Thermal degradation behavior of poly(lactic acid) stereocomplex. Polym. Degrad. Stab. 86, 197–208 (2004).
Tsukegi, T., Motoyama, T., Shirai, Y., Nishida, H. & Endo, T. Racemization behavior of L,L-lactide during heating. Polym. Degrad. Stab. 92, 552–559 (2007).
Yasuda, N., Wang, Y., Tsukegi, T., Shirai, Y. & Nishida, H. Quantitative evaluation of photodegradation and racemization of poly(L-lactic acid) under UV-C irradiation. Polym. Degrad. Stab. 95, 1238–1243 (2010).
Omura, M., Tsukegi, T., Shirai, Y., Nishida, H. & Endo, T. Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene. Ind. Eng. Chem. Res. 45, 2949–2953 (2006).
Omura, M., Tsukegi, T., Shirai, Y. & Nishida, H. Selective depolymerization of poly-L-lactic acid into L,L-lactide from blends with polystyrene. Kobunshi Ronbunshu 64, 745–750 (2007).
Omura, M., Tsukegi, T., Shirai, Y. & Nishida, H. Selective depolymerization of poly-L-lactic acid into L,L-lactide from blends with polybutylene succinate related copolymers. Kobunshi Ronbunshu 64, 751–757 (2007).
Nishida, H., Tsukegi, T., Ando, Y. & Shirai, Y. Highly effective monomer recycling of poly(lactic acid) in polymer alloys. Polym. Prepr. Jpn 59, 5284–5285 (2010).
Tsukegi, T., Yasuda, N., Hashimoto, N., Yanagida, H., Shirai, Y. & Nishida, H. Chemical recycling of poly(L-lactic acid) compounds contained with aluminum hydroxide type flame retardant with a twin screw extruder. Seikei-Kakou 22, 585–591 (2010).
Tsuneizumi, Y., Kuwahara, M., Okamoto, K. & Matsumura, S. Chemical recycling of poly(lactic acid)-based polymer blends using environmentally benign catalysts. Polym. Degrad. Stab. 95, 1387–1393 (2010).
Watanabe, K., Ando, Y., Shirai, Y. & Nishida, H. Racemization-free monomer: α-hydroxy isobutyric acid from bio-based lactic acid. Chem. Lett. 39, 698–699 (2010).
Andou, Y., Watanabe, K., Shirai, Y. & Nishida, H. Physical properties and thermal-degradability of polytetramethyglycolide (PTMG). Polym. Prepr. Jpn 59, 5403–5404 (2010).
Rohwerder, T. & Müller, R. H. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb. Cell Fact. 9, 13 (2010).
Tokiwa, Y. & Ugwu, C. U. Biotechnological production of (R)-3-hydroxybutyric acid monomer. J. Biotechnol. 132, 264–272 (2007).
Ishizaki, A., Tanaka, K. & Taga, N. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Appl. Microbiol. Biotechnol. 57, 6–12 (2001).
Abe, H. Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol. Biosci. 6, 469–486 (2006).
Melchiors, M., Keul, H. & Höcker, H. Depolymerization of poly[(R)-3-hydroxybutyrate] to cyclic oligomers and polymerization of the cyclic trimer: An example of thermodynamic recycling. Macromolecules 29, 6442–6451 (1996).
Ariffin, H., Nishida, H., Shirai, Y. & Hassan, M. A. Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polym. Degrad. Stab. 93, 1433–1439 (2008).
Ariffin, H., Nishida, H., Shirai, Y. & Hassan, M. A. Anhydride production as an additional mechanism of poly(3-hydroxybutyrate) pyrolysis. J. Appl. Polym. Sci. 111, 323–328 (2009).
Ariffin, H., Nishida, H., Shirai, Y. & Hassan, M. A. Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polym. Degrad. Stab. 95, 1375–1381 (2010).
Portilla-Arias, J. A., Garcỳa-Alvarez, M., de Ilarduya, A. M., Holler, E. & Munoz-Guerra, S. Thermal decomposition of fungal poly(β,L-malic acid) and poly(β,L-malate)s. Biomacromolecules 7, 3283–3290 (2006).
Acknowledgements
I am grateful to Professor Takeshi Endo (Kinki University) and Yoshihito Shirai (Kyushu Institute of Technology) for their kind guidance on my researches cited in this article. I also acknowledge Professor Takashi Sawaguchi at Nihon University for his helpful support for preparation of this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nishida, H. Development of materials and technologies for control of polymer recycling. Polym J 43, 435–447 (2011). https://doi.org/10.1038/pj.2011.16
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2011.16
Keywords
This article is cited by
-
Recent progress in photoreactive crosslinkers in polymer network materials toward advanced photocontrollability
Polymer Journal (2024)
-
Preparation of De-crosslinked Polyethylene from Waste Crosslinked High-Density Polyethylene Using Supercritical Twin-Screw Extrusion
Korean Journal of Chemical Engineering (2024)
-
Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate
Polymer Bulletin (2019)
-
Construction of reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl structure and poly(ethylene glycol)
Polymer Bulletin (2016)