Abstract
An actuator is an energy transducer that can convert input energies into work. Cross-linked liquid-crystalline polymers show photoinduced deformation with changes in the molecular shape and alignment of the polymers. Polymer materials can transduce converted light energy into mechanical stress by the macroscopic deformation of the polymers (photomechanical effect). The effect of the molecular structures of the photochromic liquid-crystalline polymers on the photoinduced deformation is studied. The mechanism of the photoinduced deformation of the polymers is investigated. Three-dimensional movements of the liquid-crystalline polymers are achieved by laminating the polymers into a flexible polymer sheet. In this review, the design of the polymer materials with a photochromic moiety and an evaluation of their photomechanical effects are described. The photomodulation of the alignment of liquid-crystalline polymers and their applications for light-driven polymer actuators are summarized.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Yager, K. G. & Barrett, C. J. in Smart Light-Responsive Materials (eds Zhao, Y. & Ikeda T.) Ch. 1 1–46 (Wiley, New Jersey, 2009).
Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).
Hamp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev 100, 1755–1776 (2000).
Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003).
Gunes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2003).
Ikeda, T., Mamiya, J. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).
Osada, Y., Okuzaki, H. & Hori, H. A polymer gel with electrically driven motility. Nature 355, 242–244 (1992).
Baughman, R. H. Conducting polymer artificial muscles. Synth. Met. 78, 339–353 (1996).
Park, S. -E. & Shrout, T. R. Ultrahigh strain and piezoelectric in relaxor based ferroelectric signal crystals. J. Appl. Phys. 82, 1804–1811 (1997).
Baugham, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S. & Kertesz, M. Carbon nanotube actuators. Science 284, 1340–1344 (1999).
Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001).
Sauvage, J. -P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).
Balzani, V., Cresi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).
Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006).
Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).
Morimoto, M. & Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010).
Kobatake, S., Takami, S., Muto, T., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).
Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced shape changes of crystalline organic nanorods. Adv. Mater. 19, 1276–1280 (2007).
Terao, F., Morimoto, M. & Irie, M. Light-driven molecular-crystal actuations: rapid and reversible bending of rodlike mixed crystals of diarylethene derivatives. Angew. Chem. Int. Ed. 51, 901–904 (2012).
Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).
Koshima, H., Ojima, N. & Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131, 6890–6891 (2009).
Koshima, H., Takeuchi, K., Uchimoto, H., Shiro, M. & Hashizume, D. Photomechanical bending of salicylideneaniline crystals. Chem. Commun. 47, 11423–11425 (2011).
Nakano, H. Direction control of photomechanical bending of a photochromic molecular fiber. J. Mater. Chem. 20, 2071–2074 (2010).
Nakano, H. & Suzuki, M. Photoinduced mass flow of photochromic molecular materials. J. Mater. Chem. 22, 3702–3704 (2012).
Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).
Pelrine, R., Kornbluh, R., Pei, Q. & Josoph, J. Hight-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).
Athanassiou, A., Kalyva, M., Lakioraki, K., Georgiou, S. & Fotakis, C. All-optical reversible actuation of photochromic-polymer microsystems. Adv. Mater. 17, 988–992 (2005).
Lendlein, A. & Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002).
Lendlein, A., Jiang, H., Jünger, O. & Langer, R. Light-induced shape-memory polymers. Nature 434, 879–882 (2005).
Li, Y., He, Y., Tong, X. & Wang, X. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J. Am. Chem. Soc. 127, 2402–2403 (2005).
Li, Y., He, Y., Tong, X. & Wang, X. Stretching effect of linearly polarized Ar+ laser single-beam on azo polymer colloidal spheres. Langmuir 22, 2288–2291 (2006).
Warner, M. & Terentjev, E. M. Liquid crystal elastomers, (Oxford University Press, Oxford, 2003).
Kupfer, J. & Finkelmann, H. Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behavior and reorientation processes. Macromol. Chem. Phys. 195, 1353–1367 (1994).
Finkelmann, H., Kock, H.-J. & Rehage, G. Investigation on liquid crystalline polysiloxane 3 liquid crystalline elastomers—a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981).
Waner, M., Gelling, K. P. & Vilgis, T. A. Theory of nematic networks. J. Chem. Phys. 88, 4008–04013 (1988).
Mao, Y., Terentjev, E. M. & Warner, M. Cholesteric elastomers: deformation photonic solids. Phys. Rev. E 64, 041803 (2001).
Stenull, O. & Lubensky, T. C. Phase transitions and soft elasticity of smectic elastomers. Phys. Rev. Lett. 94, 018304 (2005).
Corbett, D. & Warner, M. Nonlinear photoresponse of disordered elastomers. Phys. Rev. Lett. 96, 237802 (2006).
Crobett, D. & Warner, M. Linear and nonlinear photoinduced deformations of cantilevers. Phys. Rev. Lett. 99, 174302 (2007).
Thomson, D. L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D. & Ratna, B. R. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875 (2001).
Irie, M. Photochromism: memories and switches–introduction. Chem. Rev. 100, 1683 (2000).
Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).
Shibaev, V., Bobrovsky, A. & Boiko, N. Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog. Polym. Sci. 28, 729–836 (2003).
Sackmann, E. Photochemically induced reversible color changes in cholesteric liquid crystals. J. Am. Chem. Soc. 93, 7088–7090 (1971).
Tazuke, S., Kurihara, S. & Ikeda, T. Amplified image recording in liquid crystal media by means of photochemically triggered phase transition. Chem. Lett. 16, 911–914 (1987).
Ikeda, T., Sasaki, T. & Ichimura, K. Photochemical switching of polarization in ferroelectric liquid-crystal films. Nature 361, 1214–1216 (1993).
Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).
Weigert, F. Uber einen neuen effekt der strahlung in lichtempfindlichen schichten. Verh. Dtsch. Phys. Ges. 21, 479–491 (1919).
Todorov, T., Tomova, N. & Nikolova, L. High-sensitivity material with reversible photoinduced anisotropy. Opt. Commun. 47, 123–126 (1983).
Shishido, A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym. J. 42, 525–533 (2010).
Eich, M., Wendorff, J. H., Rech, B. & Ringsdorf, H. Reversible digital and holographic optical storage in polymeric liquid-crystals. Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
Yamamoto, T., Hasegawa, M., Kanazawa, A., Shiono, T. & Ikeda, T. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films. J. Mater. Chem. 10, 337–342 (2000).
Yoneyama, Y., Yamamoto, T., Hasegawa, M., Tsutsumi, O., Kanazawa, A., Shiono, T. & Ikeda, T. Formation of intensity grating in a polymer liquid crystal with a side-chain azobenzene moiety by photoinduced alignment change of mesogens. J. Mater. Chem. 11, 3008–3013 (2001).
Natansohn, A. & Rochon, P. Optically induced surface gratings on azoaromatic polymer-films. Appl. Phys. Lett. 66, 136–138 (1995).
Kim, D. Y., Tripathy, S. H., Li, L. & Kumar, J. Laser-induced holographic surface-relief gratings on nonlinear-optical polymer-films. Appl. Phys. Lett. 66, 1166–1168 (1995).
Barrett, C. J., Mamiya, J., Yager, K. G. & Ikeda, T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3, 1249–1261 (2007).
Kurihara, S., Sakamoto, A. & Nonaka, T. Fast photochemical switching of a liquid-crystalline polymer network containing azobenzene molecules. Macromolecules 31, 4648–4650 (1998).
Kurihara, S., Sakamoto, A., Yoneyama, D. & Nonaka, T. Photochemical switching behavior of liquid crystalline polymer networks containing azobenzene molecules. Macromolecules 32, 6493–6498 (1999).
Kurihara, S., Yoneyama, D. & Nonaka, T. Photochemical switching behavior of liquid-crystalline networks: effect of molecular structure of azobenzene molecules. Chem. Mater. 13, 2807–2812 (2001).
Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 015501 (2001).
Hogan, P. M., Tajbakhsh, A. R. & Terentjev, E. M. UV manipulation of order and macroscopic shape in nematic elastomers. Phys. Rev. E 65, 041720 (2002).
Cviklinski, J., Tajbakhsh, A. R. & Terentjev, E. M. UV isomerization in nemtic elastomers as a route to photo-mechanical transducer. Eur. Phys. J. E 9, 427–434 (2002).
Ikeda, T., Nakano, M., Yu, Y., Tsutsumi, O. & Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15, 201–205 (2003).
Yu, Y., Nakano, M. & Ikeda, T. Directed bending of a polymer film by light. Nature 425, 145 (2003).
Kondo, M., Yu, M. & Ikeda, T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew. Chem. Int. Ed. 45, 1378–1382 (2006).
Yu, Y., Maeda, T., Mamiya, J. & Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 46, 881–883 (2007).
Mamiya, J., Yoshitake, A., Kondo, M., Yu, Y. & Ikeda, T. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J. Mater. Chem. 18, 63–65 (2008).
Kondo, M., Sugimoto, M., Yamada, M., Naka, Y., Mamiya, J., Kinoshita, M., Shishido, A., Yu, Y. & Ikeda, T. Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J. Mater. Chem. 20, 117–120 (2010).
Kondo, M., Miyasato, R., Naka, Y., Mamiya, J., Kinoshita, M., Yu, Y., Barrett, C. J. & Ikeda, T. Photomechanical properties of azobenzene liquid-crystalline elastomers. Liq. Cryst. 36, 1289 (2009).
Shimamura, A., Priimagi, A., Mamiya, J., Ikeda, T., Yu, Y., Barrett, C. J. & Shishido, A. Simultaneous analysis of optical and mechanical properties of cross-linked azobenzene-containing liquid-crystalline polymer films. ACS Appl. Mater. Interfaces 3, 4190–4196 (2011).
Yamada, M., Kondo, M., Mamiya, J., Yu, Y., Kinoshita, M., Barrett, C. J. & Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008).
Yamada, M., Kondo, M., Miyasato, R., Naka, Y., Mamiya, J., Kinoshita, M., Shishido, A., Yu, Y., Barrett, C. J. & Ikeda, T. Photomobile polymer materials-various three-dimensional movements. J. Mater. Chem. 19, 60–62 (2009).
Cheng, F., Yin, R., Zhang, Y., Yen, C. & Yu, Y. Fully plastic microrobots which manipulate objects using only visible light. Soft Matter 6, 3447–3449 (2010).
van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).
Naka, Y., Mamiya, J., Shishido, A., Washio, M. & Ikeda, T. Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J. Mater. Chem. 21, 1681–1683 (2011).
Yoshino, T., Kondo, M., Mamiya, J., Kinoshita, M., Yu, Y. & Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer films. Adv. Mater. 22, 1361–1363 (2010).
Acknowledgements
I thank the following colleagues for their guidance and experimental contributions: Professors Tomiki Ikeda, Yanlei Yu, Atsushi Shishido, Drs Motoi Kinoshita, Munenori Yamada, Arri Priimagi, Mizuho Kondo, Aki Shimamura, Yumiko Naka, Mrs Manabu Sugimoto, Akira Yoshitake and Taiki Yoshino.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mamiya, Ji. Photomechanical energy conversion based on cross-linked liquid-crystalline polymers. Polym J 45, 239–246 (2013). https://doi.org/10.1038/pj.2012.140
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.140
Keywords
This article is cited by
-
Synthesis of biobased functional materials using photoactive cinnamate derivatives
Polymer Journal (2023)
-
New strategies and implications for the photoalignment of liquid crystalline polymers
Polymer Journal (2014)