Abstract
Ethylene-octene copolymers (EOCs) with two different octene contents (20 and 35 wt%) and the same melt flow index (3 g per 10 min) were cross-linked using various levels (0.3, 0.5 and 0.7 wt%) of dicumyl peroxide at different temperatures. Cross-linking and degradation were analyzed by rubber process analyzer (RPA) within a temperature range of 150–200 °C. The highest s′max (maximum elastic torque) and the lowest tan(delta) were found for EOC-20 with low-octene content at all cross-linking temperatures. Lower peroxide efficiency was observed in the case of the high-octene copolymer. Increased degradation was observed with increasing cross-linking temperature. High-octene EOC was found to be more vulnerable to degradation. According to dynamic mechanical analysis, the storage modulus (M′) and the glass transition temperature (Tg) obtained from the tan(delta) peaks were found to decrease with increasing octene content. The differential scanning calorimetry (DSC) results show that the octene content has an inverse effect on the crystallinity (X) and melting point (Tm)—due to the reduction in the average number of consecutive ethylene units. Creep testing at 150 °C confirmed the cross-linkability results obtained by RPA and the gel content analyses. Increased β-scission due to high numbers of tertiary carbon atoms present in the chain has resulted in the poorer cross-linking and inferior properties of high-octene EOC.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Holden, G., Kricheldorf, H. R. & Quirk, R. P. (eds). Thermoplastic Elastomers, (Hanser Gardner Publications, Munich, 2004).
Bensason, S., Minick, J., Moet, A., Chum, S., Hiltner, A. & Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. Pol. Phys. 34, 1301–1315 (1996).
Angel, C. M., Norky, V., Isabel, G. -M., Carlos, M. J. & Maria, P. J. Characterization of electron beam irradiation blends based on metallocene ethylene-1-octene copolymer. Polym. Sci. Pol. Phys. 45, 2432–2440 (2007).
Babu, R. R., Singha, N. K. & Naskar, K. Phase morphology and melt rheological behavior of uncross-linked and dynamically cross-linked polyolefin blends: role of macromolecular structure. Polym. Bull 66, 95–118 (2011).
Nayak, N. C. & Tripathy, D. K. Effect of aluminium siIicate filler on morphology and physical properties of closed cell microcellular ethylene-octene copolymer. J. Mater. Sci. 37, 1347–1354 (2002).
Zhou, W. & Zhu, S. ESR study of peroxide-induced cross-linking of high density polyethylene. Macromolecules 31, 4335–4341 (1998).
Sirisinha, K. & Meksawat, D. Changes in properties of silane–water cross-linked metallocene ethylene-octene copolymer after prolonged cross-linking time. J. Appl. Polym. Sci. 93, 901–906 (2004).
Khonakdar, H. A., Morshedian, J., Wagenknecht, U. & Jafari, S. H. An investigation of chemical cross-linking effect on properties of high-density polyethylene. Polymer 44, 4301–4309 (2003).
Anbarasan, R., Babot, O. & Maillard, B. Cross-linking of high-density polyethylene in the presence of organic peroxides. J. Appl. Polym. Sci. 93, 75–81 (2004).
Ghosh, P., Dev, D. & Chakrabarti, A. Reactive melt processing of polyethylene: effect of peroxide action on polymer structure, melt rheology and relaxation behaviour. Polymer 38, 6175–6180 (1997).
Machado, A. V., Covas, J. A. & Duin, M.V. Monitoring polyolefin modification along the axis of a twin screw extruder. I. Effect of peroxide concentration. J. Appl. Polym. Sci. 81, 58–68 (2001).
Parent, J. S., Tripp, M. & Dupont, J. Selectivity of peroxide-initiated graft modification of ethylene copolymers. Polym. Eng. Sci. 43, 234–242 (2003).
Ratner, S., Weinberg, A. & Marom, G. Morphology and mechanicaI properties of cross-linked PE/PE composite materials. Polym. Composite 24, 422–427 (2003).
Basfar, A. A., Mosnácek, J., Shukri, T. M., Bahattab, M. A., Noireaux, P. & Courdreuse, A. Mechanical and thermal properties of blends of low-density polyethylene and ethylene vinyl acetate cross-linked by both dicumyl peroxide and ionizing radiation for wire and cable applications. J. Appl. Polym. Sci. 107, 642–649 (2008).
Benson, R. S., Moore, E. A., Martinez-Pardo, M. E. & Zaragoza, D. L. Effect of gamma irradiation on ethylene-octene copolymers produced by constrained geometry catalyst. Nucl. Instrum. Meth. B 151, 174–180 (1999).
Luan, S. F., Shia, H., Yao, Z. H., Wang, J. W., Song, Y. X. & Yin, J. H. Effect of electron beam irradiation sterilization on the biomedical poly (octene-co-ethylene)/polypropylene films. Nucl. Instrum. Meth. B 268, 1474–1477 (2010).
Shen, F. -W., Mckellop, H. A. & Salovey, R. Irradiation of chemically cross-linked ultrahigh molecular weight polyethylene. J. Polym. Sci. Pol. Phys. 34, 1063–1077 (1996).
Tretinnikov, O. N., Ogata, S. & Ikada, Y. Surface cross-linking of polyethylene by electron beam irradiation in air. Polymer 39, 6115–6120 (1998).
Barzin, J., Azizi, H. & Morshedian, J. Preparation of silane-grafted and moisture cross-linked low density polyethylene: Part I: factors affecting performance of grafting and cross-linking. Polym-Plast. Technol. 45, 979–983 (2006).
Fabris, F. W., Stedile, F. C., Mauler, R. S. & Nachtigall, S. M. B. Free radical modification of LDPE with vinyltriethoxysilane. Eur. Polym. J. 40, 1119–1126 (2004).
Garnier, L., Duquesne, S., Casetta, M., Lewandowski, M. & Bourbigot, S. Melt spinning of silane-water cross-linked polyethylene-octene through a reactive extrusion process. React. Funct. Polym. 70, 775–783 (2010).
Kuan, H. -C., Kuan, J. -F., Ma, C. -C. M. & Huang, J. -M. Thermal and mechanical properties of silane- grafted water cross-linked polyethylene. J. Appl. Polym. Sci. 96, 2383–2391 (2005).
Yang, S., Song, G., Zhao, Y., Yang, C. & She, X. Mechanism of a one-step method for preparing silane grafting and cross-linking polypropylene. Polym. Eng. Sci. 47, 1004–1008 (2007).
Nicolás, J., Ressia, J. A., Vallés, E. M., Merino, J. C. & Pastor, J. M. Characterization of metallocene ethylene-1-octene copolymers with high comonomer content cross-linked by dicumyl peroxide or β-radiation. J. Appl. Polym. Sci. 112, 2691–2700 (2009).
Yang, K., Yu, W. & Zhou, C. X. Thermal oxidation of metallocene-catalyzed poly(ethylene octene) by a rheological method. J. Appl. Polym. Sci. 105, 846–852 (2007).
Paul, S. & Kale, D. D. Impact modification of polypropylene copolymer with a polyolefinic elastomer. J. Appl. Polym. Sci. 76, 1480–1484 (2000).
Basuli, U., Chaki, T. K. & Naskar, K. Mechanical properties of thermoplastic elastomers based on silicone rubber and an ethylene-octene copolymer by dynamic vulcanization. J. Appl. Polym. Sci. 108, 1079–1085 (2008).
Svoboda, P., Poongavalappil, S., Theravalappil, R., Svobodova, D., Mokrejs, P., Kolomaznik, K., Ougizawa, T. & Inoue, T. Cross-linking of ethylene-octene copolymer (EOC) by dicumyl peroxide (DCP). J. Appl. Polym. Sci. 121, 521–530 (2011).
Al-Malaika, S., Peng, X. & Watson, H. Metallocene ethylene-1-octene copolymers: Influence of comonomer content on thermo-mechanical, rheological, and thermo-oxidative behaviours before and after melt processing in an internal mixer. Polym. Degrad. Stabil. 91, 3131–3148 (2006).
Simanke, A. G., Galland, G. B., Freitas, L., Jornada, J. A. H. d., Quijada, R. & Mauler, R. S. Influence of the comonomer content on the thermal and dynamic mechanical properties of metallocene ethylene/1-octene copolymers. Polymer 40, 5489–5495 (1999).
Khanna, Y. P., Turi, E. A., Taylor, T. J., Vickroy, V. V. & Abbott, R. F. Dynamic mechanical relaxations in polyethylene. Macromolecules 18, 1302–1309 (1985).
Acknowledgements
This work was supported by the Internal Grant Agency (IGA/FT/2012/040) and also by the Operational Programme Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of the Czech Republic within the framework of the Center of Polymer Systems project (registration number: CZ.1.05/2.1.00/03.0111).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Poongavalappil, S., Svoboda, P., Theravalappil, R. et al. Influence of branching density on the cross-linkability of ethylene-octene copolymers. Polym J 45, 651–658 (2013). https://doi.org/10.1038/pj.2012.189
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.189
Keywords
This article is cited by
-
Long-chain branch-induced interfacial interaction and its effect on morphology development in polypropylene/ethylene octene copolymer blend
Journal of Materials Science (2019)