Abstract
Polyisoprene (PIp)/single-walled carbon nanotube (SWNT) composites were prepared by grafting PIp from the surface of SWNTs via in situ anionic polymerization using sec-butyllithium as an initiator. The anionic initiator molecules were covalently attached to the SWNTs to form SWNTs-bearing carbanions, as confirmed by Fourier transform infrared analysis and Raman spectra. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to image the PIp-g-SWNT composites; the results show a relatively uniform polymer phase present on the surface of individual, debundled nanotubes. The carbanions on the SWNT surface help separate the nanotubes in solution and lead to the development of homogeneous PIp rubber composites with well-dispersed nanotubes. Compared with pure PIp, the PIp/SWNT nanocomposites showed a significant improvement in thermal properties.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 99, 1787–1799 (1999).
Thostenson, E. T., Ren, Z. & Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol 61, 1899–1912 (2001).
Dai, H. J. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res 35, 1035–1044 (2002).
Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew Chem. Int. Ed. 41, 1853–1859 (2002).
Qin, S. H., Qin, D. Q., Ford, W. T., Resasco, D. E. & Herrera, J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc. 126, 170–176 (2004).
Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).
Yu, M., Lourie, O., Dyer, M. J., Kelly, T. F. & Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).
Dalton, A. B., Collins, S., Munoz, E., Razal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G. & Baughman, R. H. Super-tough carbon nanotube fibres. Nature 423, 703–703 (2003).
Shi, S., Zhang, L. & Li, J. Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J. Polym. Res. 16, 395–399 (2009).
Garg, P., Singh, B. P., Kumar, G., Gupta, T., Pandey, I., Seth, R. K., Tandon, R. P. & Mathur, R. B. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J. Polym. Res. 18, 1397–1407 (2011).
Tasis, D., Tagmatarchis, N., Georgakilas, V. & Prato, M. Soluble carbon nanotubes. Chem. Eur. J 9, 4000–4008 (2003).
Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E. & Haddon, R. C. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113 (2002).
Star, A., Stoddart, J. F., Steuerman, D. W., Heath, J. R. & Stoddart, J. F. Starched carbon nanotubes. Angew Chem. Int. Ed. 41, 2508–2512 (2002).
Gomez, F. J., Chen, R. J., Wang, D., Waymouth, R. M. & Dai, H. Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes. Chem. Commun. 190–191 (2003).
Peng, H. Q., Alemany, L. B., Margrave, J. L. & Khabashesku, V. N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174–15182 (2003).
Kong, H., Gao, C. & Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412–413 (2004).
Viswanathan, G., Chakrapani, N., Yang, H., Wei, B. Q., Chung, H. S., Cho, K. W., Ryu, C. Y. & Ajayan, P. M. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258–9259 (2003).
Chen, S. M., Shen, W. M., Wu, G. Z., Chen, D. Y. & Jiang, M. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett. 402, 312–317 (2005).
Chen, S. M., Chen, D. Y. & Wu, G. Z. Grafting of Poly(tBA) and PtBA-b-PMMA onto the surface of SWNTs using carbanions as the initiator. Macromol. Rapid Commun. 27, 882–887 (2006).
Feng, X. The Study of High Cis-Polyisoprene Synthesized by Anionic Polymerization[D] (Dalian University of Technology, China, 2009).
Lefrant, S. Raman and SERS studies of carbon nanotube systems. Curr. Appl. Phys. 2, 479–482 (2002).
Gong, X. Y., Liu, J., Baskaran, S., Voise, R. D. & Young, J. S. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049–1052 (2000).
Liang, F., Sadana, A. K., Peera, A., Chattopadhyay, J., Gu, Z., Hauge, R. H. & Billups, W. E. A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257–1260 (2004).
Pucciariello, R., Villani, V. & Giammarino, G. Thermal behaviour of nanocomposites based on linear-low-density poly(ethylene) and carbon nanotubes prepared by high energy ball milling. J. Polym. Res. 18, 949–956 (2011).
Acknowledgements
This work was supported by the National Science Foundation of China (NSFC) (Grant No. 61177032), the Foundation of Chunlei Plan of Shandong University of Science and Technology (No. 01100731302) and the Foundation for Innovative Research Groups of the NSFC (Grant No. 61021061).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cui, L., Yu, J., Yu, X. et al. In situ synthesis of polyisoprene/grafted single-walled carbon nanotube composites. Polym J 45, 834–838 (2013). https://doi.org/10.1038/pj.2012.225
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.225