Abstract
Designing hydrogels with self-assembled or self-organized structures has become an attractive field of research because these hydrogels usually have robust functions and promising applications, such as in artificial tissues and optical sensors. However, the self-organized structures developed in synthetic hydrogels via molecular self-assembly are generally limited to the sub-micrometer or micrometer level, which is far from the related scale achieved in biological tissues. Therefore, it is desirable to create macroscopically ordered structures in hydrogels; these structures should greatly improve the material’s functionalities, such as their optical properties. In this review, we generally introduce our recent studies on the synthesis of hydrogels with macroscopic-scale liquid crystal structures based on the self-assembly of a semi-rigid polyanion, poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) (PBDT). Upon electrostatic interaction with multivalent cations or polycations, PBDT molecules form semi-rigid complexes or mesoscopic bundles that further self-assemble into macroscopic organized structures and are frozen by the subsequent gelation process. We have developed physical hydrogels with centimeter-scale anisotropic structures, polycationic hydrogels with millimeter-scale cylindrically symmetric structures and plate gels with cubic-packed concentric domains. This work should contribute to the development of macroscopic self-organized structures in hydrogel materials with specific functions.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Gartner, L. P. & Hiatt, J. L. Color Textbook of Histology. 2nd ed. (Saunders, Philadelphia, 2001).
Sanchez, C., Arribart, H. & Giraud-Guille, M. M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. (Springer-Verlag Inc., New York, 1993).
McGrath, K. & Kaplan, D. S. Protein-Based Materials (Bikhauser, Boston, 1997).
Coppin, C. M. & Leavis, P. C. Quantitation of liquid-crystalline ordering in F-actin solutions. Biophys. J. 63, 794–807 (1992).
Perumal, S., Antipova, O. & Orgel, J. P. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA 105, 2824–2829 (2008).
Hirst, L. S., Pynn, R., Bruinsma, R. F. & Safinya, C. R. Hierarchical self-assembly of actin bundle networks: gels with surface protein skin layers. J. Chem. Phys. 223, 104902 (2005).
Zhu, N., Liggitt, D., Liu, Y. & Debs, R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209–211 (1993).
Kwon, H. J., Kakugo, A., Ura, T., Okajima, T., Tanaka, Y., Furukawa, H., Osada, Y. & Gong, J. P. Actin network formation by unidirectional polycation diffusion. Langmuir 23, 6257–6262 (2007).
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).
Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).
Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).
Li, M.-H., Keller, P., Yang, J. & Albouy, P.-A. An artificial muscle with lamellar structure based on a nematic troblock copolymer. Adv. Mater. 16, 1922–1925 (2004).
Stuart, M. A. C., Huck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol 21, 1171–1178 (2003).
Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem., Int. Ed. 47, 8002–8018 (2008).
Lutolf, M. P. & Hubbell., J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).
Zhang, S., Greenfield, M. A., Meta, A., Palmer, L. C., Bitton, R., Mantei, J. R., Aparicio, C., de la Curz, M. O. & Stupp, S. I. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).
Tsujii, K., Hayakawa, M., Onda, T. & Tanaka, T. A novel hybrid material of polymer gels and bilayer membranes. Macromolecules 30, 7397–7402 (1997).
Wu, Z. L. & Gong, J. P. Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater 3, 57–64 (2011).
Osada, Y. & Matsuda, A. Shape memory in hydrogels. Nature 376, 219 (1995).
Kato, T., Mizoshita, N. & Kishimoto, K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem., Int. Ed. 45, 38–68 (2006).
Chung, H. J. & Park, T. G. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4, 429–437 (2009).
Kang, K., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).
Huang, Z., Lee, H., Lee, E., Kang, S.-K., Man, J.-M. & Lee, M. Responsive nematic gels from the self-assembly of aqueous nanofibres. Nat. Commun. 2, 459.
Um, S. H., Lee, J. B., Park, N., Kwon, S. Y., Umbach, C. C. & Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).
Kaneko, T., Yamaoka, K., Gong, J. P. & Osada, Y. Liquid-crystalline hydrogels. 1. Enhanced effects of incorporation of acrylic acid units on the liquid-crystalline ordering. Macromolecules 33, 412–418 (2000).
Kaneko, T., Yamaoka, K., Osada, Y. & Gong, J. P. Thermoresponsive shrinkage triggered by mesophase transition in liquid crystalline physical hydrogels. Macromolecules 37, 5385–5388 (2004).
Kato, T., Hirai, Y., Nakaso, S. & Moriyama, M. Liquid-crystalline physical gels. Chem. Soc. Rev. 36, 1857–1867 (2007).
Kleinschmidt, F., Hickl, M., Saalwächter, K., Schmidt, C. & Finkelmann, H. Lamellar liquid single crystal hydrogels: synthesis and investigation of anisotropic water diffusion and swelling. Macromolecules 38, 9772–9782 (2005).
Wall, B. D., Diegelmann, S. R., Zhang, S., Dawidczyk, T. J., Wilson, W. L., Katz, H. E., Mao, H.-Q. & Tovar, J. D. Aligned macroscopic domains of optoelectronic nanostructures prepared via shear-flow sssembly of peptide hydrogels. Adv. Mater. 23, 5009–5014 (2011).
Haque, M. A., Kamita, G., Kurokawa, T., Tsujii, K. & Gong, J. P. Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22, 5110–5114 (2010).
Haque, M., Kurokawa, T., Kamita, G., Yue, Y. & Gong, J. P. Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem. Mater. 23, 5200–5207 (2011).
Haque, M., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011).
Funaki, T., Kaneko, T., Yamaoka, K., Ohsedo, Y., Gong, J. P., Osada, Y., Shibasaki, Y. & Ueda, M. Shear-induced mesophase organization of polyanionic rigid rods in aqueous solution. Langmuir 20, 6518–6520 (2004).
Yang, W., Furukawa, H., Shigekura, Y., Shikinaka, K., Osada, Y. & Gong, J. P. Self-assembling structure in solution of a semirigid polyelectrolyte. Macromolecules 41, 1791–1799 (2008).
Shigekura, Y., Chen, Y. M., Furukawa, H., Kaneko, T., Kaneko, D., Osada, Y. & Gong, J. P. Anisotropic polyion-complex gels via template polymerization. Adv. Mater. 17, 2695–2699 (2005).
Shigekura, Y., Furukawa, H., Yang, W., Chen, Y. M., Kaneko, T., Osada, Y. & Gong, J. P. Anisotropic gelation seeded by a rod-like polyelectrolyte. Macromolecules 40, 2477–2485 (2007).
Yang, W., Furukawa, H. & Gong, J. P. Highly extensible double-network gels with self-assembling anisotropic structure. Adv. Mater. 20, 4499–4503 (2008).
Wu, Z. L., Furukawa, H., Yang, W. & Gong, J. P. Mesoscopic network structure of a semi-rigid polyion complex nested in a polyactionic hydrogel. Adv. Mater. 21, 4696–4700 (2009).
Wu, Z. L., Kurokawa, T., Liang, S., Furukawa, H. & Gong, J. P. Hydrogels with cylindrically symmetric structure at macroscopic scale by self-assembly of semi-rigid polyion complex. J. Am. Chem. Soc. 132, 10064–10069 (2010).
Wu, Z. L., Kurokawa, T., Liang, S. & Gong, J. P. Dual network formation in polyelectrolyte hdyrogel via viscoelastic phase separation: role of ionic strength and polymerization kinetics. Macromolecules 43, 8202–8208 (2010).
Wu, Z. L., Arifuzzaman, M., Kurokawa, T., Furukawa, H. & Gong, J. P. Hydrogel with cubic-packed giant concentric domains of semi-rigid polyion complex. Soft Matter 7, 1884–1889 (2010).
Wu, Z. L., Kurokawa, T., Sawada, D., Hu., J., Furukawa, H. & Gong, J. P. Anisotropic hydrogel from complexation-driven reorientation of semirigid pilyanion at Ca2+ diffusion flux front. Macromolecules 44, 3535–3541 (2011).
Wu, Z. L., Sawada, D., Kurokawa, T., Kakugo, A., Yang, W., Furukawa, H. & Gong, J. P. Strain-induced molecular reorientation and birefringence reversion of a robust, anisotropic double-network hydrogel. Macromolecules 44, 3542–3547 (2011).
Vandenberg, E. J., Diveley, W. R., Filar, L. J., Pater, S. R. & Barth, H. G. The synthesis and solution properties of some rigid-chain, water-soluble polymers: poly[N,N′-(sulfo-phenylene)phthalamide]s and poly[N,N′-(sulfo-p-phenylene)pyromellitimide]. J. Polym. Sci., Part A: Polym. Chem 27, 3745–3757 (1989).
Sarkar, N. & Kershner, L. D. Rigid rod water-soluble polymers. J. Appl. Polym. Chem 27, 393–408 (1989).
Murata, K. & Haraguchi, K. Optical anisotropy in polymer–clay nanocomposite hydrogel and its change on uniaxial deformation. J. Mater. Chem 17, 3385–3388 (2007).
Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. & Vill, V. Handbook of Liquid Crystals, Wiley-VCH, Weinheim, (1998).
Grzybowski, B. A., Bishop, K. J. M., Campbell, C. J., Fialkowski, M. & Smoukov, S. K. Micro- and nanotechnology via reaction-diffusion. Soft Matter 1, 114–128 (2005).
Dobashi, T., Nobe, M., Yoshihara, H. & Konno, A. Liquid crystalline gel with refractive index gradient of curdlan. Langmuir 20, 6530–6534 (2004).
Nobe, M., Dobashi, T. & Yamamoto, T. Dynamics in dialysis process for liquid crystalline gel formation. Langmuir 21, 8155–8160 (2005).
Dobashi, T., Furusawa, K., Kita, E., Minamisawa, Y. & Yamamoto, T. DNA liquid-crystalline gel as adsorbent of carcinogenic agent. Langmuir 23, 1303–1306 (2007).
Maki, Y., Ito, K., Hosoya, N., Yoneyama, C., Furusawa, K., Yamamoto, T., Dobashi, T., Sugimoto, Y. & Wakabayashi, K. Anisotropic structure of calcium-induced alginate gels by optical and small-angle X-ray scattering measurements. Biomacromolecules 12, 2145–2152 (2011).
Butler, J. C., Angelini, T., Tang, J. X. & Wong, G. C. L. Ion Multivalence and like-charge polyelectrolyte attraction. Phys. Rev. Lett. 91, 028301 (2003).
Gummel, J., Cousin, F. & Boué, F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J. Am. Chem. Soc. 129, 5806–5807 (2007).
Capito, R. M., Azevedo, H. S., Velichko, Y., Mata, S. A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).
Carvajal, D., Bitton, R., Mantei, J. R., Velichko, Y. S., Stupp, S. I. & Shull, K. R. Physical properties of hierarchically ordered self-assembled planar and spherical membranes. Soft Matter 6, 1816–1823 (2010).
Szamel, G. Reptation as a dynamic mean-field theory: study of a simple model of rodlike polymers. Phys. Rev. Lett. 70, 3744–3747 (1993).
Cush, R., Dorman, D. & Russo, P. S. Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules 37, 9577–9584 (2004).
Ujiie, S. & Iimura, K. Thermal properties and orientational behavior of a liquid-crystalline ion complex polymer. Macromolecules 25, 3174–3178 (1992).
Every, H. A., Van der Ham, L., Picken, S. J. & Mendes, E. Physical properties of oriented thin films formed by the electrostatic complexation of sulfonated polyaramid. J. Phys. Chem. B. 112, 16403–16408 (2008).
Every, H. A., Van der Ham, L., Picken, S. J. & Mendes, E. Spontaneous homeotropic alignment in films of rigid–flexible polyelectrolyte complexes. Soft Matter 5, 342–345 (2009).
Vorflusev, V. & Kumar, S. Phase-separated composite films for liquid crystal displays. Science 283, 1903–1905 (1999).
Désilles, N., Lecamp, L., Lebaudy, P. & Bunel, C. Gradient structure materials from homogeneous system induced by UV photopolymerization. Polymer 44, 6159–6167 (2003).
Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).
Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).
Wu, Z. L., Kurokawa, T. & Gong, J. P. Novel developed systems and techniques based on double-network principle. Bull. Chem. Soc. Jpn. 84, 1295–1311 (2011).
Acknowledgements
This research was financially supported by a Grant-in-Aid for Specially Promoted Research (no. 18002002) from the Ministry of Education, Science, Sports and Culture of Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang Wu, Z., Kurokawa, T. & Gong, J. Hydrogels with a macroscopic-scale liquid crystal structure by self-assembly of a semi-rigid polyion complex. Polym J 44, 503–511 (2012). https://doi.org/10.1038/pj.2012.74
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.74
Keywords
This article is cited by
-
On-chip fabrication of magnetic alginate hydrogel microfibers by multilayered pneumatic microvalves
Microfluidics and Nanofluidics (2014)