Abstract
To increase the electric energy density of dielectric elastomers, high dielectric constant nanocomposites were developed by chemically bonding oligomers of copper phthalocyanine oligomers (CuPc), a high dielectric constant organic semiconductor, to polyurethane (PU). Transmission electron microscope (TEM) images revealed that the sizes of the CuPc particles in the nanocomposite of PU functionalized with 8.78 vol% of CuPc were in the range of 10–20 nm, much smaller than the sizes (250–600 nm) in PU blended with the same volume fraction of CuPc. At 100 Hz, the nanocomposite film exhibited a dielectric constant of 391, representing a more than 60-fold increase with respect to pure PU. The enhanced dielectric response in the nanocomposite makes it possible to induce a high electromechanical response. A strain of 17.7% and an elastic energy density of 0.927 J cm−3 were achieved under an electric field of 10 V μm−1.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Stoyanov, H., Brochu, P., Niu, X. F., Lai, C., Yuna, S. & Pei, Q. B. Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Adv. 3, 2272–2278 (2013).
Huang, J. H., Shian, S., Suo, Z. G. & Clarke, D. R. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv. Funct. Mater 23, 5056–5061 (2013).
Stoyanov, H., Kollosche, M., Risse, S., McCarthy, D. N. & Kofod, G. Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter. 7, 194–202 (2011).
Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C. C., Suo, Z. G. & Aksay, I. A. Appl. Phys. Lett. 101, 091907-1–091907-5 (2012).
Anderson, I. A., Gisby, T. A., McKay, T. G., O’Brien, B. M. & Calius, P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101-1–04110120 (2012).
O’Halloran, A., O’Malley, F. & McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101-1–07110110 (2008).
Pelrine, R., Kornbluh, R., Pei, Q. B. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).
Kornbluh, R., Heydt, R. & Pelrine, R. in Biomedical Applications of Electroactive Polymer Actuators eds Carpi F., Smela E., Ch. 20 387–392 (Wiley, New York, NY, USA, 2009).
Zhang, Q. M., Li, H. F., Poh, M., Xu, H. S., Cheng, Z. Y., Xia, F. & Huang, C. An all-organic composite actuator material with a high dielectric constant. Nature (London) 419, 284–287 (2002).
Wang, J. W., Wang, Y., Wang, F., Li, S. Q., Xiao, J. & Shen, Q. D. A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer (Guildf) 50, 679–684 (2009).
Wang, J. W., Wang, Y., Li, S. Q. & Xiao, J. Enhanced dielectric response in P(VDF-TrFE) based all-organic nanocomposites. J. Polym. Sci. Part B 48, 490–495 (2010).
Nalwa, H. S., Dalton, L. R. & Vasudevan, P. Dielectric properties of copper-phthalocyanine polymer. Eur. Polym. J. 21, 943–947 (1985).
Wang, J. W., Shen, Q. D., Bao, H. M., Yang, C. Z. & Zhang, Q. M. Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer. Macromolecules 38, 2247–2252 (2005).
Li, J. Y. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90, 217601-1–217601-4 (2003).
Achar, B. N., Fohlen, G. G. & Parker, J. A. Phthalocyanine polymers. II. Synthesis and characterizeation of some metal phthalocyanine sheet oligomers. J. Polym. Sci. 20, 1785–1790 (1982).
Wang, J. W., Shen, Q. D., Yang, C. Z. & Zhang, Q. M. High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer. Macromolecules 37, 2294–2298 (2004).
Ma, J., Liu, C. H., Li, R., Wu, H. X., Zhu, L. N. & Yang, Y. J. Preparation and properties of castor oil-based polyurethane/a-zirconium phosphate composite films. J. Appl. Polym. Sci. 121, 1815–1822 (2011).
Huang, C., Zhang, Q. M., DeBotton, G. & Bhattacharya, K. All-organic dielectric-percolative three-component composite materials with high electromechanical response. Appl. Phys. Lett. 84, 4391–4393 (2004).
Seanor, D. A. Electrical Properties of Polymers, (Academic Press, New York, NY, USA, 1982).
Bobnar, V., Levstik, A., Huang, C. & Zhang, Q. M. Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite. Phys. Rev. Lett. 92, 047604-1–047604-4 (2004).
Bobnar, V., Levstik, A., Huang, C. & Zhang, Q. M. Dielectric properties and charge transport in all-organic relaxorlike CuPc-P(VDF-TrFE-CFE) composite and its constituents. Ferroelectrics 338, 107–116 (2006).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 21174063), the Natural Science Foundation of Jiangsu Province (No. BK20131358) and the Aeronautical Science Foundation of China (No. 2011ZF52063).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Wu, C., Liu, R. et al. Enhanced dielectric behavior in nanocomposites of polyurethane bonded with copper phthalocyanine oligomers. Polym J 46, 285–292 (2014). https://doi.org/10.1038/pj.2013.101
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2013.101
Keywords
This article is cited by
-
Electromechanical response of polyol-polyurethane blends as dielectric elastomer flexible mirco-actuator material
Journal of Materials Science: Materials in Electronics (2017)