Abstract
The mean-square radii of gyration <S2> of two polystyrene (PS) samples with weight-average molar masses Mw of 2.18 × 104 and 3.88 × 104 in toluene and 2-butanone and of a cyclic amylose tris(phenylcarbamate) (cATPC) with a Mw of 4.73 × 104 in tetrahydrofuran were determined by synchrotron radiation small-angle X-ray scattering measurements over a wide range of temperatures from −77 °C to 70 °C. Both PS and cATPC are sufficiently soluble to enable SAXS measurements even at −77 °C in the solvents used. The <S2> of cATPC does not depend on temperature over the range investigated here. This result may be reasonable for such rigid ring polymers. In contrast, the radii of PS depend on temperature to a significant degree, whereas the second virial coefficient is mostly temperature independent. The resulting characteristic ratio C∞ for PS in toluene decreases monotonically with increasing temperature, as predicted both by the rotational isomeric state (RIS) and by (helical) wormlike chain models. However, C∞ in 2-butanone exhibits a minimum ∼10 °C and increases with increasing temperature, suggesting that the RIS energy parameters should be affected by the intermolecular interactions between the polymer and solvent.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Flory, P. J. Statistical mechanics of chain molecule. (Interscience (1969).
Kratky, O. & Porod, G. Rontgenuntersuchung geloster fadenmolekule. Recl. Trav. Chim. Pays-Bas. 68, 1106–1122 (1949).
Yamakawa, H. Helicimke chains in polymer solutions, (Springer, 1997).
Yamakawa, H. A new framework of polymer solution science. The helical wormlike chain. Polym. J. 31, 109–119 (1999).
Mays, J. W., Hadjichristidis, N. & Fetters, L. J. Solvent and temperature influences on polystyrene unperturbed dimensions. Macromolecules 18, 2231–2236 (1985).
Osa, M., Kanda, H., Yoshizaki, T. & Yamakawa, H. Temperature coefficients of unperturbed chain dimensions for polystyrene and poly(α-methylstyrene). Polym. J. 39, 423–427 (2007).
Mays, J. W., Hadjichristidis, N., Graessley, W. W. & Fetters, L. J. Temperature dependence of unperturbed dimensions for stereoirregular 1,4-polybutadiene and poly(α-methylstyrene). J. Polym. Sci., Part B: Polym. Phys 24, 2553–2564 (1986).
Mays, J. W., Nan, S. Y., Yunan, W., Li, J. & Hadjichristidis, N. Temperature-dependence of chain dimensions for highly syndiotactic poly(methyl methacrylate). Macromolecules 24, 4469–4471 (1991).
Hong, F., Lu, Y. J., Li, J. F., Shi, W. J., Zhang, G. Z. & Wu, C. Revisiting of dimensional scaling of linear chains in dilute solutions. Polymer. (Guildf). 51, 1413–1417 (2010).
Itou, T., Chikiri, H., Teramoto, A. & Aharoni, S. M. Wormlike chain parameters of poly(hexyl isocyanate) in dilute-solution. Polym. J. 20, 143–151 (1988).
Terao, K., Terao, Y., Teramoto, A., Nakamura, N., Fujiki, M. & Sato, T. Temperature and solvent dependence of stiffness of poly{n-hexyl-[(S)-3-methylpentyl]silylene} in dilute solutions. Macromolecules 34, 4519–4525 (2001).
Teramoto, A., Terao, K., Terao, Y., Nakamura, N., Sato, T. & Fujiki, M. Interplay of the main chain, chiral side chains, and solvent in conformational transitions: Poly{(R)-3,7-dimethyloctyl-(S)-3-methylpentyl silylene}. J. Am. Chem. Soc. 123, 12303–12310 (2001).
Wu, L., Sato, T., Tang, H.-Z. & Fujiki, M. Conformation of a polyfluorene derivative in solution. Macromolecules 37, 6183–6188 (2004).
Yanai, H. & Sato, T. Local conformation of the cellulosic chain in solution. Polym. J. 38, 226–233 (2006).
Izumi, Y., Katano, S., Funahashi, S., Furusaka, M. & Arai, M. Conformation of atactic polystyrene in carbon disulfide observed at a low temperature. Physica B: Condens Matter 180–181 (Part 1), 539–541 (1992).
Izumi, Y., Katano, S., Funahashi, S., Furusaka, M. & Arai, M. Structural study on the sol-gel transition of atactic polystyrene in carbon disulfide. Physica B: Condens Matter 180–181 (Part 1), 545–548 (1992).
Izumi, Y. Structure and mechanism of atactic polystyrene physical gel. Kobunshi Ronbunshu 55, 749–759 (1998).
Tsunashima, Y., Ikuno, M., Onodera, G. & Horii, F. Low-temperature dynamic light scattering. I. Structural reorganization and physical gel formation in cellulose triacetate/methyl acetate dilute solution at -99 - 45°c. Biopolymers 82, 222–233 (2006).
Nakamura, Y., Akashi, K., Norisuye, T., Teramoto, A. & Sato, M. Small-angle x-ray scattering with imaging plate application to dilute polymer solutions. Polym. Bull. 38, 469–476 (1997).
Terao, K., Asano, N., Kitamura, S. & Sato, T. Rigid cyclic polymer in solution: Cycloamylose tris(phenylcarbamate) in 1,4-dioxane and 2-ethoxyethanol. ACS Macro Lett 1, 1291–1294 (2012).
Miyaki, Y. & Fujita, H. Excluded-volume effects in dilute polymer solutions. 11. Tests of the two-parameter theory for radius of gyration and intrinsic viscosity. Macromolecules 14, 742–746 (1981).
Okumoto, M., Terao, K., Nakamura, Y., Norisuye, T. & Teramoto, A. Excluded-volume effects in star polymer solutions: Four-arm star polystyrene in cyclohexane near the theta temperature. Macromolecules 30, 7493–7499 (1997).
Berry, G. C. Thermodynamic and conformational properties of polystyrene.I. Light-scattering studies on dilute solutions of linear polystyrenes. J. Chem. Phys. 44, 4550–4564 (1966).
Terao, K. & Mays, J. W. On-line measurement of molecular weight and radius of gyration of polystyrene in a good solvent and in a theta solvent measured with a two-angle light scattering detector. Eur. Polym. J 40, 1623–1627 (2004).
Terao, K., Shigeuchi, K., Oyamada, K., Kitamura, S. & Sato, T. Solution properties of a cyclic chain having tunable chain stiffness: Cyclic amylose tris(n-butylcarbamate) in Θ and good solvents. Macromolecules 46, 5355–5362 (2013).
Abe, F., Einaga, Y., Yoshizaki, T. & Yamakawa, H. Excluded-volume effects on the mean-square radius of gyration of oligo- and polystyrenes in dilute solutions. Macromolecules 26, 1884–1890 (1993).
Nakata, M. Excluded volume effects in dilute solutions of linear polystyrene. Makromol. Chem. 149, 99–115 (1971).
Einaga, Y., Abe, F. & Yamakawa, H. Second virial coefficients of oligo- and polystyrenes. Effects of chain ends. Macromolecules 26, 6243–6250 (1993).
Akcasu, A. Z. & Han, C. C. Molecular weight and temperature dependence of polymer dimensions in solution. Macromolecules 12, 276–280 (1979).
Yamakawa, H. & Stockmayer, W. H. Statistical mechanics of wormlike chains. II. Excluded volume effects. J. Chem. Phys. 57, 2843–2854 (1972).
Shimada, J. & Yamakawa, H. Statistical-mechanics of helical worm-like chains.25. Excluded-volume effects. J. Chem. Phys. 85, 591–600 (1986).
Domb, C. & Barrett, A. J. Universality approach to expansion factor of a polymer-chain. Polymer. (Guildf). 17, 179–184 (1976).
Barrett, A. J. Intrinsic viscosity and friction coefficients for an excluded volume polymer in the kirkwood approximations. Macromolecules 17, 1566–1572 (1984).
Benoit, H. & Doty, P. Light scattering from non-gaussian chains. J. Phys. Chem. 57, 958–963 (1953).
Norisuye, T. & Fujita, H. Excluded-volume effects in dilute polymer solutions. Xiii. Effects of chain stiffness. Polym. J. 14, 143–147 (1982).
Konishi, T., Yoshizaki, T., Saito, T., Einaga, Y. & Yamakawa, H. Mean-square radius of gyration of oligostyrenes and polystyrenes in dilute-solutions. Macromolecules 23, 290–297 (1990).
Nakamura, Y. & Norisuye, T. Scattering function for wormlike chains with finite thickness. J. Polym. Sci., Part. B: Polym. Phys. 42, 1398–1407 (2004).
Nakamura, Y. & Norisuye, T. In Soft-matter characterization Pecora R., Borsali R (eds. Vol. 1, 236–286 (Springer, 2008).
Miyaki, Y., Einaga, Y. & Fujita, H. Excluded-volume effects in dilute polymer-solutions.7. Very high molecular-weight polystyrene in benzene and cyclohexane. Macromolecules 11, 1180–1186 (1978).
Fukuda, M., Fukutomi, M., Kato, Y. & Hashimot., T. Solution properties of high molecular-weight polystyrene. J. Polym. Sci., Part. B: Polym. Phys. 12, 871–890 (1974).
Inagaki, H., Suzuki, H., Fujii, M. & Matsuo, T. Note on experimental tests of theories for the excluded volume effect in polymer coils. J. Phys. Chem. 70, 1718–1726 (1966).
Fetters, L. J., Hadjichristidis, N., Lindner, J. S. & Mays, J. W. Molecular-weight dependence of hydrodynamic and thermodynamic properties for well-defined linear-polymers in solution. J. Phys. Chem. Ref. Data 23, 619–640 (1994).
Munk, P., Abijaoude, M. T. & Halbrook, M. E. Intrinsic viscosity of polystyrene in mixed solvents. J. Polym. Sci., Polym. Phys. Ed. 16, 105–115 (1978).
Acknowledgements
The synchrotron radiation experiments were performed at the BL40B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2012A1059, 2012B1050 and 2013A1046) and at the BL-10C in KEK-PF under the approval of the Photon Factory Program Advisory Committee (No. 2011G557). We thank Dr Noboru Ohta (SPring-8) for his help in setting up the SAXS apparatus in SPring-8, Ms Xin Yue Jiang (Osaka University) for performing preliminary SAXS measurements, and Professor Takahiro Sato (Osaka University) for fruitful discussion. This work was supported by JSPS KAKENHI Grant Numbers 23750128 and 25410130.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Terao, K., Morihana, N. & Ichikawa, H. Solution SAXS measurements over a wide temperature range to determine the unperturbed chain dimensions of polystyrene and a cyclic amylose derivative. Polym J 46, 155–159 (2014). https://doi.org/10.1038/pj.2013.76
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2013.76
Keywords
This article is cited by
-
Chain stiffness of cellulose tris(phenylcarbamate) in tricresyl phosphate (TCP)
Polymer Bulletin (2018)