Abstract
In this study, we investigated the influence of ZnO particles obtained by spray pyrolysis with submicron dimensions on the structure, morphology, thermal stability, photodegradation stability, mechanical and antibacterial properties of isotactic polypropylene (iPP)/ZnO composites prepared by melt mixing. The results of the morphological analyses indicate that, despite the surface polarity mismatch between iPP and ZnO, the extrusion process and the unique characteristics of the utilized particles allow a composite with a fair distribution of particles to be obtained, although some agglomeration phenomena can occur, which primarily depends on the composition of the composite. The addition of ZnO particles imparts significant improvements on the photodegradation resistance of iPP to ultraviolet irradiation, which confirms that ZnO particles act as screens for this type of radiation. The thermal stability of the iPP/ZnO composites is improved with respect to that of neat iPP and increases with the content of ZnO. The iPP/ZnO composites exhibit significant antibacterial activity against Escherichia coli. This activity is dependent on exposure time and composition.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Wang, C. X. & Chen, S. H. L. Fragrance-release property of β-cyclodextrin inclusion compounds and their application in aromatherapy. J. Ind. Text. 34, 157–166 (2005).
Vigneshwaran, N., Kumar, S., Kathe, A. A., Varadarajan, P. V. & Prasad, V. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17, 5087–5095 (2006).
Silvestre, C., Duraccio, D. & Cimmino, S. Food packaging based on polymer nanomaterials. Progr. Polym. Sci. 36, 1766–1782 (2011).
Gabriel, G. J., Som, A., Madkour, A. E., Eren, T. & Tew, G. N. Infectious disease: connecting innate immunity to biocidal polymers. Mat. Sci. Eng. R: Reports 57, 28–64 (2007).
Anuvat Jangchud, N. E., Chonhenchob, V. & Suppakul, P. Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag. Technol. Sci. 25, 7–17 (2012).
Quintero, R. I., Rodriguez, F., Bruna, J., Guarda, A. & Galotto, M. J. Cellulose Acetate Butyrate Nanocomposites with Antimicrobial Properties for Food Packaging, Published online in Wiley Online Library: <http://www.wileyonlinelibrary.com> doi:10.1002/pts.1981 (2012).
Li, B., Yu, S., Hwang, J. Y. & Shi, S. Antibacterial vermiculite nano-material. J. Miner. Mater. Charact. Eng. 1, 61–68 (2002).
Mũnoz-Bonilla, A. & Fernandez-Garcia, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 37, 281–339 (2012).
Kumar, R. & Münstedt, H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26, 2081–2088 (2005).
Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25, 279–283 (1997).
Fujishima, A., Rao, T. N. & Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000).
Stoimenov, P. K., Klinger, R. L., Marchin, G. L. & Klabunde, K. J. Metal oxide nanoparticles as bactericidal agents. Languimuir 18, 6679–6686 (2002).
Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001).
Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).
Padmavathy, N. & Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mat. 9, 035004–035010 (2008).
Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phy. Chem. 104, 6095–6098 (2000).
Tjong, S. C. & Liang, G. D. Electrical properties of low-density polyethylene/ZnO nanocomposites. Mat. Chem. Phys. 100, 1–5 (2006).
Droval, G., Aranberri, I., Bilbao, A., German, L., Verelst, M. & Dexpert-Ghys, J. Antimicrobial activity of nanocomposites: poly(amide) 6 and low density poly(ethylene) filled with zinc oxide. e-polymers 128, 1–13 (2008).
Zhao, H. & Li, R. A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47, 3207–3217 (2006).
Huang, C., Chen, S. & Wei, W. C. J. Processing and property improvement of polymeric composites with added ZnO nanoparticles through microinjection molding. J. Appl. Polym. Sci. 102, 6009–6016 (2006).
Lepot, N., Van Bael, M. K., Van den Rul, H., D’Haen, J., Peeters, R., Franco, D. & Mullens, J. Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging. J. Appl. Polym. Sci. 120, 1616–1623 (2011).
Chandramouleeswaran, S., Mhaske, S. T., Kathe, A. A., Varadarajan, P. V., Prasad, V. & Vigneshwaran, N. Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnology 18, 8 (2007).
Tang, J., Wang, Y., Liu, H. & Belfiore, A. Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45, 2081–2091 (2004).
Fernandes, D. M., Winkler Hechenleitner, A. A., Lima, S. M., Andrade, L. H. C., Caires, A. R. L. & Gómez Pineda, E. A. Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater. Chem. Phys. 128, 371–376 (2011).
Erem, A. D., Ozcan, G. & Skrifvars, M. Antibacterial activity of PA6/ZnO nanocomposite fibers. Text. Res. J. 81, 1638–1646 (2011).
Rajendran, R., Balakumar, C., Ahammed, H. A. M., Jayakumar, S., Vaideki, K. & Rajesh, E. M. Use of zinc oxide nano particles for production of antimicrobial textiles. Sci. Technol. 2, 202–208 (2010).
Vassiliou, A., Vassiliou, D., Bikiaris, A., Chrissafis, K., Paraskevopoulos, K. M., Stavrev, S. Y. & Docoslis, A. Nanocomposites of isotactic polypropylene with carbon nanoparticles exhibiting enhanced stiffness, thermal stability and gas barrier properties. Compos. Sci. Technol. 68, 933–943 (2008).
Ellis, T. S. & D’Angelo, J. S. Thermal and mechanical properties of a polypropylene nanocomposite. J. Appl. Polym. Sci. 90, 1639–1647 (2003).
Galgali, G., Agarwal, S. & Lele, A. Effect of clay orientation on the tensile modulus of polypropylene–nanoclay composites. Polymer 45, 6059–6069 (2004).
Lee, J., Son, S. & Hong, S. Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. J. Food Eng. 86, 484–493 (2008).
Manikantan, M. R. & Varadharaju, N. Preparation and properties of polypropylene—based nanocomposite films for food packaging. Packag. Technol. Sci. 24, 191–209 (2011).
Kato, M., Usuki, A., Hasegawa, N., Okamoto, H. & Kawasumi, M. Development and applications of polyolefin– and rubber–clay nanocomposites. Polym. J. 43, 583–593 (2011).
Yuan, W., Guo, M., Miao, Z. & Liu, Y. Influence of maleic anhydride grafted polypropylene on the dispersion of clay in polypropylene/clay nanocomposites. Polym. J. 42, 745–751 (2010).
Rossignol, C., Verelst, M., Dexpert-Ghys, J. & Rul, S. Synthesis of undoped ZnO nanoparticles by spray pyrolysis. Adv. Sci. Tech. 45, 237–241 (2006).
Pratsinis, S. E. & Vemury, S. Particle formation in gases: a review. Powd. Technol. 88, 267–273 (1996).
Reuge, N., Dexpert-Ghys, J., Verelst, M. & Caussat, B. Y2O3:Eu micronic particles synthesised by spray pyrolysis: global modelling and optimisation of the evaporation stage. Chem. Eng. Process. 47, 731–743 (2008).
Minogianni, C., Gatos, K. G. & Galiotis, G. Estimation of crystallinity in isotropic isotactic polypropylene with raman spectroscopy. Appl. Spectrosc. 59, 1141–1147 (2005).
Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).
Osawa, Z. Role of metals and metal-deactivators in polymer degradation. Polym. Degrad. Stab. 20, 203 (1988).
Kotsilkova, R., Ivanov, E., Krusteva, E., Silvestre, C., Cimmino, S. & Duraccio, D. Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: thermal and mechanical properties related to the structure. J. Appl. Polym. Sci. 115, 3576 (2010).
Allen, N. S. & Edge, M. Fundamentals of Polymer Degradation and Stabilization Ch. 4 (Elsevier Applied Science, Elsevier Science Publishers, London, UK, 1992).
Qin, H., Zhang, S., Liu, H., Xie, S., Yang, M. & Shen, D. Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites. Polymer 46, 3149–3156 (2005).
Morlat, S., Mailhot, B., Gonzalez, D. & Gardette, J. L. Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. influence of nanoclay and compatibilizing agent. Chem. Mater. 16, 377–383 (2004).
Philippart, J. L., Sinturel, C., Arnaud, R. & Gardette, J. L. Influence of the exposure parameters on the mechanism of photooxidation of polypropylene. Polym. Degrad. Stab. 64, 213–225 (1999).
Obadal, M., Cermak, R., Raab, M., Verney, V., Commereuc, S. & Fraises, F. Structure evolution of α-and β-polypropylenes upon UV irradiation: a multiscale comparison. Polym. Degrad. Stab. 88, 532–539 (2005).
Kotek, J., Kelnar, I., Studenovsky, M. & Baldrian, J. Chlorosulfonated polypropylene: preparation and its application as a coupling agent in polypropylene–clay nanocomposites. Polymer 46, 4876–4881 (2005).
Yang, R., Li, Y. & Yu, J. Photo-stabilization of linear low density polyethylene by inorganic nano-particles. Polym. Degrad. Stab. 88, 168–174 (2005).
Terselius, B., Gedde, U. W. & Jansson, J. F. Structure and morphology of thermally oxidized high density polyethylene pipes. Polym. Eng. Sci. 22, 422–431 (1982).
Scheirs, J., Bigger, S. W. & Delatycki, O. Characterizing the solid-state thermal oxidation of poly (ethylene oxide) powder. Polymer 32, 2014–2019 (1991).
Kaczmarek, H. Changes to polymer morphology caused by UV irradiation: 1. Surface damage. Polymer 37, 189–194 (1996).
Allen, N. S., Edge, M., Corrales, T., Shah, M., Holdsworth, D., Catalina, F., Peinado, C. & Collar, E. P. Thermal and photooxidation of polypropylene influence of long-term ambient oxidation: spectroscopic, thermal and light scattering studies. Polymer 37, 2323–2333 (1996).
Wunderlich, B. Macromolecular Physics Vol. 2 (Academic Press, New York, 1976).
Yamamoto, O., Sawai, J. & Sasamoto, T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution. Int. J. Inorg. Mater. 2, 451–454 (2000).
Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., O’Neill, A. J. & York, D. W. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 12, 1625–1636 (2010).
Acknowledgements
The research described herein was supported by the bilateral project CNR/CNRS (Italy-France) ‘Antibacterial nanocomposites based on polyolephins for food packaging’ and by COST Action FA0904 ‘Eco-sustainable food packaging based on polymer nanomaterials’.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Silvestre, C., Cimmino, S., Pezzuto, M. et al. Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polym J 45, 938–945 (2013). https://doi.org/10.1038/pj.2013.8
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2013.8
Keywords
This article is cited by
-
ZnO-containing nanocomposites produced from Mentha pulegium L. of a new HEMA-based methacrylate copolymer: improvement the thermal and antimicrobial effect
Journal of Polymer Research (2023)
-
ZnO-based antimicrobial coatings for biomedical applications
Bioprocess and Biosystems Engineering (2022)
-
Maleic anhydride grafted acrylonitrile butadiene styrene (ABS)/zinc oxide nanocomposite: an anti-microbial material
Journal of Polymer Research (2021)
-
Preparation and characterization of gelatin/β-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system
Journal of Polymers and the Environment (2021)
-
Synthesis, Characterization, and Functional Properties of ZnO-based Polyurethane Nanocomposite for Textile Applications
Fibers and Polymers (2021)