Abstract
Nature produces materials with excellent physical and chemical properties using water as a medium under ambient temperature and pressure. The current need for more highly functional and compact materials makes the mimicking of natural processes to produce these materials a very interesting approach, not only to obtain highly functionalized materials but also to reduce the environmental impact. Our research group is engaged in the development of new stable water-soluble compounds that follow natural processes for the synthesis of materials using water as a medium. This paper summarizes a hydrothermal synthesis of rutile-type titanium oxide using water-soluble titanium complexes, controlling the crystal morphology by utilizing organic molecules as shape-control agents as well as their speculative formation mechanism and superior dielectric properties of unusually shaped titanium oxide crystals. By recapitulating our results, we indicate that control of the nano- and macro-structures and functional improvement are accomplished through the development of new precursor compounds.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Kamihara Y ., Watanabe T ., Hirano M ., Hosono H . Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).
Takahashi H ., Igawa K ., Arii K ., Kamihara Y ., Hirano M ., Hosono H . Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature 457, 376–378 (2008).
Haruta M ., Kobayashi T ., Sano H ., Yamada N . Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405–408 (1987).
Haruta M . Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).
Kato T ., Sakamoto T ., Nishimura T . Macromolecular templating for the formation of inorganic-organic hybrid structures. MRS Bull. 35, 127–132 (2010).
Aizenberg J ., Hendler G . Designing efficient microlens arrays: lessons from Nature. J. Mater. Chem. 14, 2066–2072 (2004).
Aizenberg J ., Sundar V. C ., Yablon A. D ., Weaver J. C ., Chen G . Biological glass fibers: Correlation between optical and structural properties. Proc. Natl Acad. Sci. USA 101, 3358–3363 (2004).
Kröger N . Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr. Opin. Chem. Biol. 11, 662–669 (2007).
Imai H ., Oaki Y . Emergence of helical morphologies with crystals: twisted growth under diffusion-limited conditions and chirality control with molecular recognition. CrystEngComm 12, 1679–1687 (2010).
Beniash E ., Aizenberg J ., Addadi L ., Weiner S . Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. B 264, 461–465 (1997).
Weiss I. M ., Tuross N ., Addadi L ., Weiner S . Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 293, 478–491 (2002).
Politi Y ., Levi-Kalisman Y ., Raz S ., Wilt F ., Addadi L ., Weiner S ., Sagi I . Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos. Adv. Funct. Mater. 16, 1289–1298 (2006).
Luckarift H. R ., Dickerson M. B ., Sandhage K. H ., Spain J. C . Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. small 2, 640–643 (2006).
Johnson J. M ., Kinsinger N ., Sun C ., Li D ., Kisailus D . Urease-mediated room-temperature synthesis of nanocrystalline titanium dioxide. J. Am. Chem. Soc. 134, 13974–13977 (2011).
Kakihana M ., Tada M ., Shiro M ., Petrykin V ., Osada M ., Nakamura Y . Structure and Stability of Water Soluble (NH4)8[Ti4(C6H4O7)4(O2)4]•8H2O. Inorg. Chem. 40, 891–894 (2001).
Kakihana M ., Tomita K ., Petrykin V ., Tada M ., Sasaki S ., Nakamura Y . Chelating of titanium by lactic acid in the water-soluble diammonium tris(2-hydroxypropionato)titanate(IV). Inorg. Chem. 43, 4546–4548 (2004).
Tomita K ., Petrykin V ., Kobayashi M ., Shiro M ., Yoshimura M ., Kakihana M . A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378–2381 (2006).
Kobayashi M ., Petrykin V ., Tomita K ., Kakihana M . New water-soluble complexes of titanium with amino acids and their application for synthesis of TiO2 nanoparticles. J. Ceram. Soc. Jpn 116, 578–583 (2008).
Morishima Y ., Kobayashi M ., Petrykin V ., Yin S ., Sato T ., Kakihana M ., Tomita K . Hydrothermal synthesis of brookite type TiO2 photocatalysts using a water-soluble Ti-complex coordinated by ethylenediaminetetraacetic acid. J. Ceram. Soc. Jpn 117, 320–326 (2009).
Kakihana M ., Kobayashi M ., Tomita K ., Petrykin V . Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn 83, 1285–1308 (2010).
Truong Q. D ., Kobayashi M ., Kato H ., Kakihana M . Hydrothermal synthesis of hierarchical TiO2 microspheres using a novel titanium complex coordinated by picolinic acid. J. Ceram. Soc. Jpn 119, 513–516 (2011).
Yoshizawa M ., Kobayashi M ., Petrykin V ., Kato H ., Kakihana M . Insights into a selective synthesis of anatase, rutile and brookite-type titanium dioxides by a hydrothermal treatment of titanium complexes. J. Mater. Res. 29, 90–97 (2014).
Petrykin V ., Kakihana M ., Yoshioka K ., Sasaki S ., Ueda Y ., Tomita K ., Nakamura Y ., Shiro M ., Kudo A . Synthesis and structure of new water-soluble and stable tantalum compound: Ammonium tetralactatodiperoxo-μ-oxo-ditantalate(V). Inorg. Chem. 45, 9251–9256 (2006).
Dey D ., Petrykin V ., Sasaki S ., Kakihana M . Water soluble Na[Nb(O2)3]2•H2O as a new molecular precursor for synthesis of sodium niobate. J Ceram. Soc. Jpn 115, 808–812 (2007).
Nakasuji K ., Usuda K ., Kawasaki T ., Dote E ., Hayashi S ., Mitsui G ., Adachi K ., Fujihara M ., Shimbo Y ., Kono K . Urinary and serum titanium-Assessment as an indicator of exposure to ammonium citratoperoxotitanate(IV) and its influence on renal function. Biol. Trace Elem. Res. 110, 119–131 (2006).
Kobayashi M ., Petrykin V ., Tomita K ., Yoshimura M ., Kakihana M . One-step synthesis of TiO2(B) nanoparticles from a water-soluble titanium complex. Chem. Mater. 19, 5373–5376 (2007).
Tomita K ., Kobayashi M ., Petrykin V ., Yin S ., Sato T ., Yoshimura M ., Kakihana M . Hydrothermal synthesis of TiO2 nano-particles using novel water-soluble titanium complex. J. Mater. Sci. 43, 2217–2221 (2008).
Kobayashi M ., Tomita K ., Petrykin V ., Yoshimura M ., Kakihana M . Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158–2162 (2008).
Kobayashi M ., Kato H ., Kakihana M . Synthesis of titanium dioxide nanocrystals with controlled crystal- and micro-structures from titanium complexes. Nanomater. Nanotechnol. 3, 1–10 (2013).
Kobayashi M ., Tomita K ., Kakihana M ., Higuchi T ., Yoshino R . The preparation method of peroxo-titanium compounds with low ammonium concentration. Japanese Patent No. 5008028 (2012).
Lamer V. K ., Dinegar R. H . Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).
Tomono H ., Nada H ., Zhu F ., Sakamoto T ., Nishimura T ., Kato T . Effects of magnesium ions and water molecules on the structure of amorphous calcium carbonate: A molecular dynamics study. J. Phys. Chem. B 117, 14849–14856 (2013).
Zhu F ., Nishimura T ., Sakamoto T ., Tomono H ., Nada H ., Okumura Y ., Kikuchi H ., Kato T . Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates. Chem. Asian. J. 8, 3002–3009 (2013).
Zhang Y ., Wu L ., Zeng Q ., Zhi J . An approach for controllable synthesis of different-phase titanium dioxide nanocomposites with peroxotitanium complex as precursor. J. Phys. Chem. C 112, 16457–16462 (2008).
Cheng H ., Ma J ., Zhao Z ., Qi L . Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663–671 (1995).
Zheng Y ., Shi E ., Chen Z ., Li W ., Hu X . Influence of solution concentration on the hydrothermal preparation of titania crystallites. J. Mater. Chem. 11, 1547–1551 (2001).
Gopal M ., Moberly Chan W. J ., De Jonghe L. C . Room temperature synthesis of crystalline metal oxides. J. Mater Sci. 32, 6001–6008 (1997).
Li G ., Gray K. A . Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater. 19, 1143–1146 (2007).
Testino A ., Bellobono I. R ., Buscaglia C ., Canevali C ., D’Arienzo M ., Polizzi S ., Scotti R ., Morazzoni F . Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007).
Wang Y ., Zhang L ., Deng K ., Chen X ., Zou Z . Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructure. J. Phys. Chem. C 111, 2709–2714 (2007).
Li J.-G ., Ishigaki T ., Sun X . Anatase, brookite, and rutile nanocrystals via redox reaction under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 111, 4969–4976 (2007).
Zhang Q ., Gao L . Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method. Langmuir 19, 967–971 (2003).
Chemseddine A ., Moritz T . Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235–245 (1999).
Reyes-Coronado D ., RodrÃgues-Gattorno G ., Espinosa-Pesqueira M ., Cab C ., Coss R ., Oskam G . Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnol 19, 145605–145614 (2008).
Kinsinger N. M ., Wong A ., Li D ., Villalobos F ., Kisailus D . Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water-soluble precursor. Cryst. Growth Des. 10, 5254–5261 (2010).
Kobayashi M ., Petrykin V ., Kakihana M ., Tomita K . Morphology control of rutile nanoparticles in a hydrothermal synthesis from water-soluble titanium complex aqueous solution. J. Ceram. Soc. Jpn 115, 835–839 (2007).
Kobayashi M ., Kato H ., Kakihana M . Synthesis of spindle and square bipyramid-shaped anatase-type titanium dioxide crystals by a solvothermal method using ethylenediamine. J. Ceram. Soc. Jpn 120, 494–499 (2012).
Kobayashi M ., Petrykin V ., Kakihana M ., Tomita K . Hydrothermal synthesis and photocatalytic activity of Whisker-like rutile-type titanium dioxide. J. Am. Ceram. Soc. 92, S21–S26 (2009).
Ostwald W . Studienüber die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1897).
Mendive C. B ., Bredow T ., Feldhoff A ., Blesa M ., Bahnemann D . Adsorption of oxalate on rutile particles in aqueous solutions: a spectroscopic, electron-microscopic and theoretical study. Phys. Chem. Chem. Phys. 10, 1960–1974 (2008).
Nada H . Difference in the conformation and dynamics of aspartic acid on the flat regions, step edges, and kinks of a calcite surface: A molecular dynamics study. J. Phys. Chem. C 118, 14335–14345 (2014).
Parker R. A ., Wasilik J. H . Dielectric constant and dielectric loss of TiO2 (rutile) at low frequencies. Phys. Rev. 120, 1631–1637 (1960).
Parker R. A . Static dielectric constant of rutile (TiO2), 1.6-1060°K. Phys. Rev. 124, 1719–1722 (1961).
Samara G. A ., Peercy P. S . Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile). Phys. Rev. B 7, 1131–1148 (1973).
Patzke G. R ., Zhou Y ., Kontic R ., Conrad F . Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem., Int. Ed. 50, 826–859 (2011).
Gervais F ., Kress W . Lattice dynamics of incipient ferroelectric rutile TiO2 . Phys. Rev. B 28, 2962–2968 (1983).
Osada M ., Kobayashi M ., Kakihana M . Enhanced dielectric response induced by controlled morphology in rutile TiO2 nanocrystals. J. Ceram. Soc. Jpn 121, 593–597 (2013).
Arlt G ., Hennings D ., de With G . Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985).
Grünebohm A ., Ederer C ., Entel P . First-principles study of the influence of (110)-oriented strain on the ferroelectric properties of rutile TiO2 . Phys. Rev. B 84, 132105–132108 (2011).
Acknowledgements
We thank Dr V. Petrykin (SuperOX Japan) and Dr K. Tomita (Tokai Univ.) for fruitful discussions. This work was supported in part by a Grant-in-Aid for Scientific Research (no. 22107002) on the Innovative Areas: ‘Fusion Materials’ (area no. 2206) from the Japanese Government’s Ministry of Education, Culture, Sports, Science and Technology (MEXT).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kobayashi, M., Osada, M., Kato, H. et al. Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents. Polym J 47, 78–83 (2015). https://doi.org/10.1038/pj.2014.89
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2014.89
This article is cited by
-
Precise Design of Titanium Dioxide Nanoparticles Using Nanostructured Solids as Template
Topics in Catalysis (2023)