Abstract
In order to elucidate the mechanism of degradation of γ-irradiated polytetrafluoroethylene (PTFE), gases evolved by isothermal heating under vacuum were trapped in low-temperature argon matrices. Infrared spectra of the evolved gases were assigned to COF2 and CF4 by comparison with the corresponding literatures. Kinetic analyses of the IR absorbance and chemiluminescence intensity changes against heating time were carried out to determine the rate constants of the thermal reactions, showing that CF4 was produced more rapidly than COF2. By comparison between the rate constants obtained by infrared spectroscopy and chemiluminescence spectroscopy, we propose a new thermal reaction mechanism of γ-irradiated PTFE at the molecular level.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ashby, G. E. Oxyluminescence from polypropylene. J. Polym. Sci. 50, 99–106 (1961).
Colwell, J. M., Nikolic, M. A. L., Bottle, S. E. & George, G. A. Sensitive luminescence techniques to study the early stages of polymer oxidation. Polym. Degrad. Stab. 98, 2436–2444 (2013).
Yano, A., Akai, N., Ishii, H., Satoh, C., Hironiwa, T., Millington, K. R. & Nakata, M. Thermal oxidative degradation of additive-free polypropylene pellets investigated by multicahnnel Fourier-transform chemiluminescence spectroscopy. Polym. Degrad. Stab. 98, 2680–2686 (2013).
Yano, A., Ishii, H., Satoh, C., Akai, N., Hironiwa, T., Millington, K. R. & Nakata, M. The effect of γ-ray irradiation on thermal oxidation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy. Chem. Phys. Lett. 591, 259–264 (2014).
Giannetti, E. Thermal stability and bond dissociation energy of fluorinated polymers: a critical evaluation. J. Fluorine Chem. 126, 625–632 (2005).
Kerbow, D. L. in Modern Fluoropolymers: High Performance Polymers for Diverse Application (ed. Scheirs, J.) 1–600 (Wiley, New York, NY, USA, 1997).
Noguchi, T., Yamada, E., Akai, N., Ishii, H., Satoh, C., Hironiwa, T., Millington, K. R. & Nakata, M. Thermal chemiluminescence from γ-irradiated polytetrafluoroethylene and its emission mechanism: investigation by multichannel Fourier-transform luminescence spectroscopy. Chem. Phys. Lett. 614, 181–185 (2014).
Odochian, L., Moldoveanu, C., Mocanu, A. M. & Carja, G. Contributions to the thermal degradation mechanism under nitrogen atmosphere of PTFE by TG-FTIR analysis. Influence of the additive nature. Thermochimica Acta 526, 205–212 (2011).
Jipa, S., Zaharescu, T., Setnescu, R., Kappel, W., Oros, C. & Gorghiu, L. M. RTL study of structural modifications in irradiated PTFE. Nucl. Instr. Meth. Phys. Res. B 265, 305–308 (2005).
Tsukino, S., Satoh, T., Ishii, H. & Nakata, M. Development of a multichannel Fourier-transform spectrometer to measure weak chemiluminescence: application to the emission of singlet-oxygen dimols in the decomposition of hydrogen peroxide with gallic acid and K3[Fe(CN)6]. Chem. Phys. Lett. 457, 444–447 (2008).
Ishii, H., Tsukino, K., Sekine, M. & Nakata, M. Singlet oxygen sensitized delayed emissions in hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents. Chem. Phys. Lett. 474, 285–289 (2009).
Yamada, E., Noguchi, T., Akai, N., Ishii, H., Satoh, C., Hironiwa, T., Millington, K. R. & Nakata, M. Thermal chemiluminescence from γ-irradiated polytetrafluoroethylene and its emission mechanism: kinetic analysis and bond dissociation energy of fluoroperoxide group. Chem. Phys. Lett. 616/617, 104–108 (2014).
Oshima, A., Seguchi, T. & Tabata, Y. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE). Radiat. Phys. Chem. 50, 601–606 (1997).
Oshima, A., Seguchi, T. & Tabata, Y. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)−II radical formation and reactivity. Radiat. Phys. Chem. 55, 61–71 (1999).
Norman, I & Porter, G. Trapped atoms and radicals in glass cage. Nature 174, 508–509 (1954).
Whittle, W., Dows, D. A. & Pimentel, G. C. Matrix isolation method for the experimental study of unstable species. J. Chem. Phys. 22, 1943–1943 (1954).
Barnes, A. J. Matrix isolation vibrational spectroscopy as a tool for studying conformational isomerism. J. Mol. Struct. 113, 161–174 (1984).
Horikawa, M., Akai, N., Kawai, A. & Shibuya, K. Vaporization of protic ionic liquids studied by matrix-isolation Fourier transform infrared spectroscopy. J. Phys. Chem. A 118, 3280–3287 (2014).
Sekine, M., Sekiya, H. & Nakata, M. Infrared and electronic spectra of radicals produced from 2-naphthol and carbazole by UV-induced hydrogen-atom eliminations. J. Phys. Chem. A 116, 8980–8988 (2012).
Miyagawa, M., Akai, N. & Nakata, M. UV-light induced conformational changes of 2-pyridinecarboxylic acid in low-temperature argon matrices. J. Mol. Struct. 1086, 1–7 (2015).
Hashimoto, M. & Kawata, S. Multichannel Fourier-transform infrared spectrometer. Appl. Opt. 31, 6096–6101 (1992).
Liu, L. & Davis, S. R. Matrix isolation spectroscopic study of tetrafluoroethylene oxidation. J. Phys. Chem. 96, 9719–9724 (1992).
Bettinger, H. F. & Peng, H. Thermolysis of fluorinated single-walled carbon nanotubes: Identification of gaseous decomposition products by matrix isolation infrared spectroscopy. J. Phys. Chem. B 109, 23218–23224 (2005).
Andrews, L. & Raymond, J. I. Matrix infrared spectrum of OF and detection of LiOF. J. Chem. Phys. 55, 3078–3086 (1971).
Andrews, L. Argon matrix Raman spectra of oxygen difluoride and the oxygen fluoride free radical. J. Chem. Phys. 57, 51–55 (1972).
Florin, R. E., Wall, L. A. & Res, J. Gamma irradiation of fluorocarbon polymers. Natl. Bur. Stand. A 65A, 375–387 (1961).
Tamura, N. Electron spin resonance in irradiated polytetrafluoroethylene. Decomposition of the complex spectrum. J. Phys. Soc. Jpn. 15, 943–944 (1960).
Matsugashita, T. & Shinohara, K. Electron spin resonance studies of the oxygen effect of irradiated polytetrafluoroethylene. J. Chem. Phys. 32, 954–955 (1960).
Matusgashita, T. & Shinohara, K. Electron spin resonance studies of radicals formed in irradiated polytetrafluoroethylene. J. Chem. Phys. 35, 1652–1656 (1961).
Abe, H., Imaizumi, M. & Ono, K. EPR studies on the yield of peroxy radicals in PTFE irradiated by deuterons. J. Phys. Soc. Jpn 35, 1366–1370 (1973).
Ovenall, D. W. EPR spectrum of irradiated oriented polytetrafluoroethylene. J. Chem. Phys. 38, 2448–2454 (1963).
Siegel, S. & Hedgpeth, H. Chemistry of irradiation induced polytetrafluoroethylene radicals I. Re-examination of the EPR spectra. J. Chem. Phys. 46, 3904–3912 (1967).
Iwasaki, M. Spin resonance of fluorine compounds. Fluorine Chem. Rev. 5, 1–56 (1971).
Moore, J. W. & Pearson, R. G. Kinetics and Mechanism, (John Wiley & Sons, New York, NY, USA, 1981).
Tiemblo, P., Gómez-Elvira, J. M., Teyssedre, G. & Laurent, C. Degradative luminescent processes in atactic polypropylene I. Chemiluminescence along the thermooxidation. Polym. Degrad. Stab. 66, 41–47 (1999).
Acknowledgements
We thank Professor Kozo Kuchitsu (Professor Emeritus, the University of Tokyo) for his helpful discussion. We also thank Daikin Industries for supplying the samples. This work was supported by a JSPS Grant-in-Aid for Scientific Research (C), Grant number 24550012.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Minatoyama, M., Akai, N., Yamada, E. et al. Degradation mechanism of γ-irradiated polytetrafluoroethylene (PTFE) powder by low-temperature matrix-isolation infrared spectroscopy and chemiluminescence spectroscopy. Polym J 48, 697–702 (2016). https://doi.org/10.1038/pj.2015.139
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.139