Abstract
We report the synthesis and characterization of novel 1,3,4-thiadiazole (TDz)-containing π-conjugated alternating copolymers with donor units, such as thiophene (PTDzTh), selenophene (PTDzSe), thieno[3,4-b]thiophene (PTDzTT), 3,3′-didodecyl-2,2′-bithiophene (PTDzBTh) and (E)-1,2-di-(3-dodecylthiophene)vinylene (PTDzTV). The TDz-containing polymers show deep highest occupied molecular orbital (HOMO) energy levels at approximately −5.50 to −5.20 eV due to the electron deficiency of the TDz unit. In addition, PTDzTV shows a relatively extended absorption wavelength (λonset=629 nm). The microstructures of the film state are primarily influenced by the interdigitation of the side chains, and PTDzTT with a rigid backbone forms a densely packed crystalline structure, as evidenced by grazing incident wide-angle X-ray scattering experiments. Polymer solar cells using the TDz polymers showed high open-circuit voltages up to 0.965 V based on the deep HOMO energy levels, and PTDzTV showed the highest power conversion efficiency of 0.529% among the polymers.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Yook, K. S. & Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diode. Adv. Mater. 26, 4218–4233 (2014).
Allard, S., Forster, M., Souharce, B., Thiem, H. & Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. Engl. 47, 4070–4098 (2008).
Krebs, F. C., Espinosa, N., Hosel, M., Sondergaard, R. R. & Jørgensen, M. 25th Anniversary article: rise to power – OPV-based solar parks. Adv. Mater. 26, 29–39 (2014).
Brabec, C. J., Gowrisanker, S., Halls, J. J. M., Laird, D., Jia, S. & Williams, S. P. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K. & Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005).
Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J. & Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005).
Dang, M. T., Hirsch, L. & Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011).
You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C. C., Gao, J., Li, G. & Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446–1456 (2013).
Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).
Zhou, H., Yang, L. & You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607–632 (2012).
Guo, X., Baumgarten, M. & Mullen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).
Scharber, M. C., Muhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J. & Brabec, C. J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).
Yasuda, T., Imase, T., Nakamura, Y. & Yamamoto, T. New alternative donor-acceptor arranged poly(aryleneethynylene)s and their related compounds composed of five-membered electron-accepting 1,3,4-thiadiazole, 1,2,4-triazole, or 3,4-dinitrothiophene units: synthesis, packing structure, and optical properties. Macromolecules 38, 4687–4697 (2005).
Pang, H., Skabara, P. J., Crouch, D. J., Duffy, W., Heeney, M., McCulloch, I., Coles, S. J., Horton, P. N. & Hursthouse, M. B. Structural and electronic effects of 1,3,4-thiadiazole units incorporated into polythiophene chains. Macromolecules 40, 6585–6593 (2007).
Patil, P. S., Haram, N. S., Pal, R. R., Periasamy, N., Wadgaonkar, P. P. & Salunkhe, M. M. Synthesis, spectroscopy, and electrochemical investigation of new conjugated polymers containing thiophene and 1,3,4-thiadiazole in the main chain. J. Appl. Polym. Sci. 125, 1882–1889 (2012).
Umeyama, T., Douvogianni, E. & Imahori, H. Synthesis and photovoltaic properties of conjugated polymer based on 1,3,4-thiadiazole unit. Chem. Lett. 41, 354–356 (2012).
Higashihara, T., Wu, H. C., Mizobe, T., Lu, C., Ueda, M. & Chen, W. C. Synthesis of thiophene-based π-conjugated polymers containing oxadiazole or thiadiazole moieties and their application to organic photovoltaics. Macromolecules 45, 9046–9055 (2012).
Higashihara, T., Mizobe, T., Lu, C., Chen, W. C. & Ueda, M. Synthesis of new thiadiazole-containing polythiophene derivatives and their application to organic solar cells. J. Photopolym. Sci. Technol. 26, 185–191 (2013).
Fukuta, S., Koganezawa, T., Tokita, M., Kawauchi, S., Mori, H., Ueda, M. & Higashihara, T. “Face-on” oriented π-conjugated polymers containing 1,3,4-thiadiazole moiety investigated with synchrotron GIXS measurements: relationship between morphology and PSC performance. J. Photopolym. Sci. Technol. 27, 351–356 (2014).
Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).
Guo, Z., Lee, D. Y., Liu, Y., Sun, F. Y., Sliwinski, A., Gao, H. F., Burns, P. C., Huang, L. B. & Luo, T. F. Tuning the thermal conductivity of solar cell polymers through side chain engineering. Phys. Chem. Chem. Phys. 16, 7764–7771 (2014).
Ko, S., Verploegen, E., Hong, S., Mondal, R., Hoke, E. T., Toney, M. F., McGehee, M. D. & Bao, Z. 3,4-Disubstituted polyalkylthiophenes for high-performance thin-film transistors and photovoltaics. J. Am. Chem. Soc. 133, 16722–16725 (2011).
Haid, S., Mishra, A., Weil, M., Uhrich, C., Pfeiffer, M. & Bauerle, P. Synthesis and structure–property correlations of dicyanovinyl-substituted oligoselenophenes and their application in organic solar cells. Adv. Funct. Mater. 22, 4322–4333 (2012).
Zhang, G., Fu, Y., Xie, Z. & Zhang, Q. Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications. Sol. Energy Mater. Sol. Cells 95, 1168–1173 (2011).
Shi, Q., Fan, H., Liu, Y., Chen, J., Shuai, Z., Hu, W., Li, Y. & Zhan, X. Thiazolothiazole-containing polythiophenes with low HOMO level and high hole mobility for polymer solar cells. J. Polym. Sci. Part A Polym. Chem 49, 4875–4885 (2011).
Kim, D. Y., Kim, J., Lim, B., Baeg, K. J. & Yu, B. K. Polymer containing thiophene unit and thienylenevinylene unit, and organic field effect transistor and organic solar cell containing the polymer US 8466239 B2
Noriega, R., Rivnay, J., Vandewal, K., Koch, F. P. V., Stingelin, N., Smith, P., Toney, M. F. & Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).
Rogers, J. T., Schmidt, K., Toney, M. F., Kramer, E. J. & Bazan, G. C. Structural order in bulk heterojunction films prepared with solvent additives. Adv. Mater. 23, 2284–2288 (2011).
Yiu, A. T., Beaujuge, P. M., Lee, O. P., Woo, C. H., Toney, M. F. & Frechet, J. M. J. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 2180–2185 (2012).
Chen, W., Xu, T., He, F., Wang, W., Wang, C., Strzalka, J., Liu, Y., Wen, J., Miller, D. J., Chen, J., Hong, K., Yu, L. & Darling, S. B. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707–3713 (2011).
Osaka, I., Saito, M., Koganezawa, T. & Takimiya, K. Thiophene–thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014).
Kim, G., Kang, S. J., Dutta, G. K., Han, Y. K., Shin, T. J., Noh, Y. Y. & Yang, C. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 9477–9483 (2014).
Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012).
Zhang, X., Richter, L. J., DeLongchamp, D. M., Kline, R. J., Hammond, M. R., McCulloch, I., Heeney, M., Ashraf, R. S., Smith, J. N., Anthopoulos, T. D., Schroeder, B., Geerts, Y. H., Fischer, D. A. & Toney, M. F. Molecular packing of high-mobility diketopyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J. Am. Chem. Soc. 133, 15073–15084 (2011).
Pan, H., Wu, Y., Li, Y., Liu, P., Ong, B. S., Zhu, S. & Xu, G. Benzodithiophene copolymer—a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv. Funct. Mater. 17, 3574–3579 (2007).
Graham, K. R., Cabanetos, C., Jahnke, J. P., Idso, M. N., Labban, A. E., Ngongang, N. G. O., Heumueller, T., Vandewal, K., Salleo, A., Chmelka, B. F., Amassian, A., Beaujuge, P. M. & McGehee, M. D. Importance of the donor:fullerene Intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608–9618 (2014).
Smith, C. D., Howard, I. A., Cabanetos, C., Labban, A. E., Beaujuge, P. M. & Laquai, F. Interplay between side chain pattern, polymer aggregation, and charge carrier dynamics in PBDTTPD:PCBM bulk-heterojunction solar cells. Adv. Energy Mater (e-pub ahead of print 29 January 2015; doi:10.1002/aenm.201401778)
Guo, Z., Lee, D., Schaller, R. D., Zuo, X., Lee, B., Luo, T., Gao, H. & Huang, L. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends. J. Am. Chem. Soc. 136, 10024–10032 (2014).
Acknowledgements
This study was supported by the Japan Science and Technology Agency (JST), PRESTO program (JY 220176). The authors also thank the Japan Society for the Promotion of Science for the partial financial support by KAKENHI (#24655097). SF and SM thank Innovative Flex Course for Frontier Organic Material Systems (iFront) at Yamagata University for their financial support. GIWAXS experiments were performed at the BL46XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; Proposal No. 2014B1590). We thank Professor Itaru Osaka (RIKEN) for conducting the GIWAXS experiments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fukuta, S., Wang, Z., Miyane, S. et al. Synthesis of 1,3,4-thiadiazole-based donor–acceptor alternating copolymers for polymer solar cells with high open-circuit voltage. Polym J 47, 513–521 (2015). https://doi.org/10.1038/pj.2015.19
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.19