Abstract
N-Heterocyclic carbenes (NHCs), which were first isolated in the early 1990s, have received a great deal of scientific attention as ligands for transition metal complexes and organocatalysts for more than a decade. Organocatalysis by NHCs primarily involves the reaction of carbonyl compounds, particularly the umpolung of aldehydes, although we and others have been developing the reactions and the polymerizations of Michael acceptors. This review focuses on the NHC-catalyzed transformations of Michael acceptors that were developed by our research group, including (1) tail-to-tail dimerization of a wide variety of substrates, (2) cyclotetramerization of acrylates, (3) tandem oxa-Michael addition and head-to-tail dimerization of methacrolein and (4) oxa-Michael addition polymerization of hydroxyl-functionalized acrylates. For the former two reactions, the NHCs turn the β-carbon of the Michael acceptors into nucleophilic sites (umpolung), thereby generating the deoxy-Breslow intermediate and enabling bond formation between the β-carbon and electrophiles. The latter two reactions are based on the O–C bond formation between alcohols and Michael acceptors, in which the NHC catalysts act as a Lewis base. Thus, the use of NHC catalysts allowed new modes of reactivity of Michael acceptors other than the conventional addition polymerizations.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Anthony, J., Arduengo III., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).
Anthony, J., Arduengo III., Dias, H. V. R., Harlow, R. L. & Kline, M. Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114, 5530–5534 (1992).
Anthony, J. & Arduengo III. Looking for stable carbenes: the difficulty in starting anew. Acc. Chem. Res. 32, 913–921 (1999).
Enders, D., Breuer, K., Raabe, G., Runsink, J., Teles, J. H., Melder, J. -P., Ebel, K. & Brode, S. Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-dihydro-lH-l,2,4-triazol-5-ylidene, a new stable carbene. Angew. Chem. Int. Ed. 34, 1021–1023 (1995).
Enders, D., Breuer, K., Runsink, J. & Teles, J. H. Chemical reactions of the stable carbene 1,3,4-tripheny1-4,5-dihydro-1H-1,2,4-triazo1-5-ylidene. Liebigs Ann. 2019–2028 (1996).
Enders, D., Breuer, K., Kallfass, U. & Balensiefer, T. Preparation and application of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a stable carbene. Synthesis 1292–1295 (2003).
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
N-Heterocyclic carbenes: effective tools for organometallic synthesis 1st edn (ed. Nolan, S. P.) (Wiley-VCH Verlag GmbH & Co. KGaA., 2014)
Díez-González, S., Marion, N. & Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612–3676 (2009).
Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).
Wang, Y. & Robinson, G. H. N-Heterocyclic carbene—main-group chemistry: a rapidly evolving field. Inorg. Chem. 53, 11815–11832 (2014).
Martin, C. D., Soleilhavoup, M. & Bertrand, G. Carbene-stabilized main group radicals and radical ions. Chem. Sci. 4, 3020–3030 (2013).
Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).
Marion, N., Díez-González, S. & Nolan, S. P. N-Heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 46, 2988–3000 (2007).
Enders, D. & Balensiefer, T. Nucleophilic carbenes in asymmetric organocatalysis. Acc. Chem. Res. 37, 534–541 (2004).
Vora, H. U. & Rovis, T. Asymmetric N-heterocyclic carbene (NHC) catalyzed acyl anion reactions. Aldrichimica Acta 44, 3–11 (2011).
Nair, V., Menon, R. S., Biju, A. T., Sinu, C. R., Paul, R. R., Jose, A. & Sreekumar, V. Employing homoenolates generated by NHC catalysis in carbon–carbon bond-forming reactions: state of the art. Chem. Soc. Rev 40, 5336–5346 (2011).
Biju, A. T., Kuhl, N. & Glorius, F. Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Acc. Chem. Res 44, 1182–1195 (2011).
Kamber, N. E., Jeong, W., Waymouth, R. M., Pratt, R. C., Lohmeijer, B. G. G. & Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).
Kiesewetter, M. K., Shin, E. J., Hedrick, J. L. & Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43, 2093–2107 (2010).
Fèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev. 42, 2142–2172 (2013).
Naumann, S. & Dove, A. P. N-heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polym. Chem. 6, 3185–3200 (2015).
Chen, X. -Y. & Ye, S. N-Heterocyclic carbene-catalyzed reactions of C–C unsaturated bonds. Org. Biomol. Chem. 11, 7991–7998 (2013).
Ryan, S. J., Candish, L. & Lupton, D. W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev. 42, 4906–4917 (2013).
Ukai, T., Tanaka, R. & Dokawa, T. New catalysts for acyloin condensation [in Japanese]. J. Pharm. Soc. Jpn. 63, 296–300 (1943).
Breslow, R. On the mechanism of thiamine action. IV. evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).
Stetter, H. Catalyzed addition of aldehydes to activated double bonds—A new synthetic approach. Angew. Chem. Int. Ed. 15, 639–712 (1976).
Fischer, C., Smith, S. W., Powell, D. A. & Fu, G. C. Umpolung of Michael acceptors catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc. 128, 1472–1473 (2006).
He, L., Jian, T. -Y. & Ye, S. N-Heterocyclic carbene catalyzed aza-Morita–Baylis–Hillman reaction of cyclic enones with N-tosylarylimines. J. Org. Chem. 72, 7466–7468 (2007).
Chen, X. -Y., Xia, F. & Ye, S. Catalytic MBH reaction of β-substituted nitroalkenes with azodicarboxylates. Org. Biomol. Chem. 11, 5722–5726 (2013).
He, L., Zhang, Y. -R., Huang, X. -L. & Ye, S. Chiral bifunctional N-heterocyclic carbenes: synthesis and application in the aza-Morita–Baylis–Hillman reaction. Synthesis 2825–2829 (2008).
Atienza, R. L., Roth, H. S. & Scheidt, K. A. N-heterocyclic carbene-catalyzed rearrangements of vinyl sulfones. Chem. Sci. 2, 1772–1776 (2011).
Atienza, R. L. & Scheidt, K. A. N-Heterocyclic carbene-promoted Rauhut–Currier reactions between vinyl sulfones and α,β-unsaturated aldehydes. Aust. J. Chem. 64, 1158–1164 (2011).
Chen, X. -Y., Sun, L. -H. & Ye, S. N-Heterocyclic carbene catalyzed [4+2] cycloaddition of nitroalkenes with oxodienes. Chem. Eur. J. 19, 4441–4445 (2013).
Zhang, Y. & Chen, E. Y. -X. Conjugate-addition organopolymerization: rapid production of acrylic bioplastics by N-heterocyclic carbenes. Angew. Chem. Int. Ed. 51, 2465–2469 (2012).
Hong, M. & Chen, E. Y. -X. Proton-transfer polymerization (HTP): converting methacrylates to polyesters by an N-heterocyclic carbene. Angew. Chem. Int. Ed. 53, 11900–11906 (2014).
Ottou, W. N., Bourichon, D., Vignolle, J., Wirotius, A. -L., Robert, F., Landais, Y., Sotiropoulos, J. -M., Miqueu, K. & Taton, D. Cyclodimerization versus polymerization of methyl methacrylate induced by N-heterocyclic carbenes: a combined experimental and theoretical study. Chem. Eur. J. 20, 3989–3997 (2014).
Boddaert, T., Coquerel, Y. & Rodriguez, J. Organocatalytic activity of N-heterocyclic carbenes in the Michael addition of 1,3-dicarbonyl compounds: application to a stereoselective spirocyclization sequence. Adv. Synth. Catal. 351, 1744–1748 (2009).
Phillips, E. M., Riedrich, M. & Scheidt, K. A. N-Heterocyclic carbene-catalyzed conjugate additions of alcohols. J. Am. Chem. Soc. 132, 13179–13181 (2010).
Kang, Q. & Zhang, Y. N-Heterocyclic carbene-catalyzed aza-Michael addition. Org. Biomol. Chem. 9, 6715–6720 (2011).
Boddaert, T., Coquerel, Y. & Rodriguez, J. N-Heterocyclic carbene-catalyzed Michael additions of 1,3-dicarbonyl compounds. Chem. Eur. J. 17, 2266–2271 (2011).
Hans, M., Delaude, L., Rodriguez, J. & Coquerel, Y. N-Heterocyclic carbene catalyzed carba-, sulfa-, and phospha-Michael additions with NHC·CO2 adducts as precatalysts. J. Org. Chem. 79, 2758–2764 (2014).
He, L., Guo, H., Li, Y. -Z., Du, G. -F. & Dai, B. N-Heterocyclic carbene-catalyzed formal cross-coupling reaction of α-haloenals with thiols: organocatalytic construction of sp2 carbon–sulfur bonds. Chem. Commun. 50, 3719–3721 (2014).
Matsuoka, S., Ota, Y., Washio, A., Katada, A., Ichioka, K., Takagi, K. & Suzuki, M. Organocatalytic tail-to-tail dimerization of olefin: umpolung of methyl methacrylate mediated by N-heterocyclic carbene. Org. Lett. 13, 3722–3725 (2011).
Kato, T., Ota, Y., Matsuoka, S., Takagi, K. & Suzuki, M. Experimental mechanistic studies of the tail-to-tail dimerization of methyl methacrylate catalyzed by N-heterocyclic carbene. J. Org. Chem. 78, 8739–8747 (2013).
Kato, T., Matsuoka, S. & Suzuki, M. Cooperative N-heterocyclic carbene/Brønsted acid catalysis for the tail-to-tail (co)dimerization of methacrylonitrile. J. Org. Chem. 79, 4484–4491 (2014).
Matsuoka, S., Nakazawa, M. & Suzuki, M. Expanding the scope of the tail-to-tail dimerization of vinyl compounds catalyzed by N-heterocyclic carbene. Bull. Chem. Soc. Jpn. doi:10.1246/bcsj.20150048 (in the press)
Matsuoka, S., Namera, S., Washio, A., Takagi, K. & Suzuki, M. N-Heterocyclic carbene-catalyzed cyclotetramerization of acrylates. Org. Lett. 15, 5916–5919 (2013).
Matsuoka, S., Shimakawa, S., Takagi, K. & Suzuki, M. Organocatalytic head-to-tail dimerization of methacrolein via conjugate addition of methanol: an alcohol activation mechanism proved by electrospray ionization mass spectrometry. Tetrahedron Lett. 52, 6835–6838 (2011).
Matsuoka, S., Namera, S. & Suzuki, M. Oxa-Michael addition polymerization of acrylates catalyzed by N-heterocyclic carbenes. Polym. Chem. 6, 294–301 (2015).
Biju, A. T., Padmanaban, M., Wurz, N. E. & Glorius, F. N-Heterocyclic carbene catalyzed umpolung of Michael acceptors for intermolecular reactions. Angew. Chem. Int. Ed. 50, 8412–8415 (2011).
Schedler, M., Wurz, N. E., Daniliuc, C. G. & Glorius, F. N-Heterocyclic carbene catalyzed umpolung of styrenes: mechanistic elucidation and selective tail-to-tail dimerization. Org. Lett. 16, 3134–3137 (2014).
Matsuoka, S., Tochigi, Y., Takagi, K. & Suzuki, M. Sequential one-pot and three-component reactions of an N-heterocyclic carbene to form 4-(1,2,4-triazol-5-ylidene)pyrrolidine-2,5-diones: a tandem umpolung/annulation sequence via deoxy-Breslow intermediates. Tetrahedron 68, 9836–9841 (2012).
Acknowledgements
I thank Professor Masato Suzuki and Professor Koji Takagi of the Nagoya Institute of Technology for their helpful discussions. I also acknowledge Mr Atsushi Washio, Mr Yoshiya Ota, Mr Shintaro Shimakawa, Ms Akiho Katada, Mr Yusuke Tochigi, Mr Terumasa Kato, Ms Shoko Namera and Mr Masanori Nakazawa for their experimental contributions. This work was partially supported by Grant-in-Aid for Scientific Research for Young Scientists (B) No. 24750102, the Hibi Science Foundation, and the Toukai Foundation for Technology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no conflict of interest.
Rights and permissions
About this article
Cite this article
Matsuoka, Si. N-Heterocyclic carbene-catalyzed dimerization, cyclotetramerization and polymerization of Michael acceptors. Polym J 47, 713–718 (2015). https://doi.org/10.1038/pj.2015.59
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.59
This article is cited by
-
Synthesis, structure and catalysis/applications of N-heterocyclic carbene based on macrocycles
Journal of Inclusion Phenomena and Macrocyclic Chemistry (2018)
-
Post-polymerization modification of unsaturated polyesters by Michael addition of N-heterocyclic carbenes
Polymer Journal (2017)