Abstract
Polymer gels, a representative state of network polymers, are a valuable and well-known class of materials with various functional and attractive properties and are thus commonly used in daily life. The properties of a polymer gel depend not only on the chemical structure of the network but also on the physical structure, including crosslinking points, polymer chains or network compositions, as demonstrated by recent studies on polymer gels with elaborate physical structures. By using a new type of porous crystal, a metal–organic framework (MOF) consisting of organic ligands and metal ions, as the key material, several research groups have developed a synthetic procedure for the formation of network polymers with highly controlled structures. This review focuses on the integration of MOFs and organic network polymers to form shaped network polymers or organic–inorganic hybrid networks through the following three methods: (1) polymerization of the organic ligands in a MOF using the guest molecules, (2) polymerization of homopolymerizable organic ligands in a MOF in the absence of guest molecules, and (3) formation of MOFs from polymeric organic ligands.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Tanaka, T., Fillmore, D., Sun, S.-T., Nishio, I., Swislow, G. & Shah, A . Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).
Osada, Y. & Gong, J.-P . Soft and wet materials. Polymer gels. Adv. Mater. 10, 827–837 (1998).
Osada, T., Okuzaki, H. & Hori, H . A polymer gel with electrically driven motility. Nature 355, 242–244 (1992).
Osada, Y. & Gong, J . Stimuli-responsive polymer gels and their application to chemomechanical systems. Prog. Polym. Sci. 18, 187–226 (1993).
Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S . Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).
Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J . Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).
Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M . Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999).
Ryu, J.-H., Chacko, R. T., Jiwpanich, S., Bickerton, S., Babu, R. P. & Thayumanavan, S . Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J. Am. Chem. Soc. 132, 17227–17235 (2010).
Discher, D. E. & Eisenberg, A . Polymer vesicles. Science 297, 967–973 (2002).
Hoffman, A. S . Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002).
Klouda, L. & Mikos, A. G . Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 68, 34–45 (2008).
Nonoyama, T., Wada, S., Kiyama, R., Kitamura, N., Mredha, M. T., Zhang, X., Kurokawa, T., Nakajima, T., Takagi, Y., Yasuda, K. & Gong, J. P . Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration. Adv. Mater. 28, 6740–6745 (2016).
Ono, T., Sugimoto, T., Shinkai, S. & Sada, K . Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat. Mater. 6, 429–433 (2007).
Zhang, Y. Q., Tanaka, T. & Shibayama, M . Super-absorbency and phase transition of gels in physiological salt solutions. Nature 360, 142–144 (1992).
Wu, J., Wei, Y., Lin, J. & Lin, S . Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44, 6513–6520 (2003).
Okumura, Y. & Ito, K . The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).
Ito, K . Novel cross-linking concept of polymer network: synthesis, structure and properties of slide-ring gels with freely movable junctions. Polym. J. 39, 489–499 (2007).
Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y . Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).
Gong, J. P . Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).
Haraguchi, K. & Takehisa, T . Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/de-sweling properties. Adv. Mater. 14, 1120–1124 (2002).
Haraguchi, K . Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym. J. 43, 223–241 (2011).
Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y. & Okano, T . Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374, 240–242 (1995).
Kaneko, Y., Sakai, K., Kikuchi, A., Yoshida, R., Sakurai, Y. & Okano, T . Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 28, 7717–7723 (1995).
Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S. & Seki, K . Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4'-bpy)3(NO3 4]·xH2O}n (M=Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997).
Kitagawa, S., Kitaura, R. & Noro, S . Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).
Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M . Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M . Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T . Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).
Li, J. R., Kuppler, R. J. & Zhou, H. C . Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
Li, J. R., Sculley, J. & Zhou, H. C . Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T . Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).
Ishiwata, T., Furukawa, Y., Sugikawa, K., Kokado, K. & Sada, K . Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework. J. Am. Chem. Soc. 135, 5427–5432 (2013).
Furukawa, Y., Ishiwata, T., Sugikawa, K., Kokado, K. & Sada, K . Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew. Chem. Int. Ed. 51, 10566–10569 (2012).
Wang, Z. & Cohen, S. M . Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007).
Goto, Y., Sato, H., Shinkai, S. & Sada, K . 'Clickable' metal - organic framework. J. Am. Chem. Soc. 130, 14354–14355 (2008).
Huisgen, R . 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 2, 565–598 (1961).
Kolb, H. C., Finn, M. G. & Sharpless, K. B . Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Jeong, K. S., Go, Y. B., Shin, S. M., Lee, S. J., Kim, J., Yaghi, O. M. & Jeong, N . Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chem. Sci. 2, 877 (2011).
Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K. P . A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).
Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M., Yaghi, O. M. & Stoddart, J. F . Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. 49, 8630–8634 (2010).
Tsotsalas, M., Liu, J., Tettmann, B., Grosjean, S., Shahnas, A., Wang, Z., Azucena, C., Addicoat, M., Heine, T., Lahann, J., Overhage, J., Bräse, S., Gliemann, H. & Wöll, C . Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks. J. Am. Chem. Soc. 136, 8–11 (2014).
Shekhah, O., Wang, H., Kowarik, S., Schreiber, F., Paulus, M., Tolan, M., Sternemann, C., Evers, F., Zacher, D., Fischer, R. A. & Wöll, C . Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118–15119 (2007).
Mugnaini, V., Tsotsalas, M., Bebensee, F., Grosjean, S., Shahnas, A., Bräse, S., Lahann, J., Buck, M. & Wöll, C . Electrochemical investigation of covalently post-synthetic modified SURGEL coatings. Chem. Commun. 50, 11129–11131 (2014).
Schmitt, S., Silvestre, M., Tsotsalas, M., Winkler, A.-L., Shahnas, A., Grosjean, S., Laye, F., Gliemann, H., Lahann, J., Bräse, S., Franzreb, M. & Wöll, C . Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules. ACS Nano 9, 4219–4226 (2015).
Wittig, G. & Krebs, A . Zur Existenz niedergliedriger cycloalkine, I. Chem. Ber. 94, 3260–3275 (1961).
Agard, N. J., Prescher, J. A. & Bertozzi, C. R . A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).
Distefano, G., Suzuki, H., Tsujimoto, M., Isoda, S., Bracco, S., Comotti, A., Sozzani, P., Uemura, T. & Kitagawa, S . Highly ordered alignment of a vinyl polymer by host-guest cross-polymerization. Nat. Chem. 5, 335–341 (2013).
Park, I. H., Chanthapally, A., Zhang, Z., Lee, S. S., Zaworotko, M. J. & Vittal, J. J . Metal-organic organopolymeric hybrid framework by reversible [2+2] cycloaddition reaction. Angew. Chem. Int. Ed. 53, 414–419 (2014).
Park, I. H., Medishetty, R., Lee, H. H., Mulijanto, C. E., Quah, H. S., Lee, S. S. & Vittal, J. J . Formation of a syndiotactic organic polymer inside a MOF by a [2+2] photo-polymerization reaction. Angew. Chem. Int. Ed. 54, 7313–7317 (2015).
Allen, C. A., Boissonnault, J. A., Cirera, J., Gulland, R., Paesani, F. & Cohen, S. M . Chemically crosslinked isoreticular metal-organic frameworks. Chem. Commun. 49, 3200–3202 (2013).
Allen, C. A. & Cohen, S. M . Exploration of chemically cross-linked metal-organic frameworks. Inorg. Chem. 53, 7014–7019 (2014).
Zhang, Z., Nguyen, H. T., Miller, S. A. & Cohen, S. M . polyMOFs: a class of interconvertible polymer-metal-organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015).
Zhang, Z., Nguyen, H. T., Miller, S. A., Ploskonka, A. M., DeCoste, J. B. & Cohen, S. M . Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).
Henke, S., Schneemann, A., Wutscher, A. & Fischer, R. A . Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464–9474 (2012).
Henke, S. & Fischer, R. A . Gated channels in a honeycomb-like zinc-dicarboxylate-bipyridine framework with flexible alkyl ether side chains. J. Am. Chem. Soc. 133, 2064–2067 (2011).
Lee, S. C., Choi, E. Y., Lee, S. B., Kim, S. W. & Kwon, O. P . Unusual transformation from a solvent-stabilized 1D coordination polymer to a metal-organic framework (MOF)-like cross-linked 3D coordination polymer. Chem. Eur. J. 21, 15570–15574 (2015).
Yanai, N., Uemura, T., Ohba, M., Kadowaki, Y., Maesato, M., Takenaka, M., Nishitsuji, S., Hasegawa, H. & Kitagawa, S . Fabrication of two-dimensional polymer arrays: template synthesis of polypyrrole between redox-active coordination nanoslits. Angew. Chem. Int. Ed. 47, 9883–9886 (2008).
Uemura, T., Kadowaki, Y., Yanai, N. & Kitagawa, S . Template synthesis of porous polypyrrole in 3D coordination nanochannels. Chem. Mater. 21, 4096–4098 (2009).
Wang, Q.-X. & Zhang, C.-Y . Oriented synthesis of one-dimensional polypyrrole molecule chains in a metal-organic framework. Macromol. Rapid Commun. 32, 1610–1614 (2011).
Uemura, T., Uchida, N., Asano, A., Saeki, A., Seki, S., Tsujimoto, M., Isoda, S. & Kitagawa, S . Highly photoconducting π-stacked polymer accommodated in coordination nanochannels. J. Am. Chem. Soc. 134, 8360–8363 (2012).
Uemura, T., Kaseda, T. & Kitagawa, S . Controlled synthesis of anisotropic polymer particles templated by porous coordination polymers. Chem. Mater. 25, 3772–3776 (2013).
Uemura, T., Kitagawa, K., Horike, S., Kawamura, T., Kitagawa, S., Mizuno, M. & Endo, K . Radical polymerisation of styrene in porous coordination polymers. Chem. Commun. 41, 5968–5970 (2005).
Uemura, T., Hiramatsu, D., Kubota, Y., Takata, M. & Kitagawa, S . Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. Angew. Chem. Int. Ed. 119, 5075–5078 (2007).
Uemura, T., Mochizuki, S. & Kitagawa, S . Radical copolymerization mediated by unsaturated metal sites in coordination nanochannels. ACS Macro Lett. 4, 788–791 (2015).
Uemura, T., Nakanishi, R., Mochizuki, S., Murata, Y. & Kitagawa, S . Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels. Chem. Commun. 51, 9892–9895 (2015).
Kobayashi, Y., Horie, Y., Honjo, K., Uemura, T. & Kitagawa, S . The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chem. Commun. 52, 5156–5159 (2016).
Miyata, M . in Comprehensive Supramolecular Chemistry, Vol. 10, (ed. Lehn, J.-M.) 557 (Pergamon, Oxford, 1996).
Sada, K., Takeuchi, M., Fujita, N., Numata, M. & Shinkai, S . Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. Chem. Soc. Rev. 36, 415–435 (2007).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Kokado, K. Network polymers derived from the integration of flexible organic polymers and rigid metal–organic frameworks. Polym J 49, 345–353 (2017). https://doi.org/10.1038/pj.2016.122
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.122
This article is cited by
-
Polymer-Metal Organic Frameworks: Recent Advances in Synthesis Strategies and Applications
Journal of Inorganic and Organometallic Polymers and Materials (2025)
-
Controlled release of phosphorus-containing free radical from the porous channels of metal–organic frame to reduce the combustion heat and smoke releases of polystyrene
Journal of Thermal Analysis and Calorimetry (2024)
-
Color-tuning, mirror-like encryption and selective lighting of lanthanide-based nanocellulose nanopaper for multichannel anti-counterfeiting
Cellulose (2023)
-
An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management
Advanced Fiber Materials (2022)
-
Unidirectional compression and expansion of a crosslinked MOF crystal prepared via axis-dependent crosslinking and ligand exchange
Polymer Journal (2017)