Abstract
Owing to the many advantages over step-growth polymerizations, chain-growth polymerization has been utilized in a variety of controlled polymer synthesis, including many important industrial processes. Chain-growth polymerization is generally used for alkenes and alkynes to form ‘aliphatic main chains’, such as alkylene and alkenylene units. In contrast, this method has rarely been applied to the construction of ‘aromatic main chains’ such as arylene units because of the poor variety of the corresponding aromatic monomers in polymer synthesis. Considering the increasing importance of arylene-containing polymers in academic and industrial societies, the development of controlled methods for the formation/introduction of arylene groups by chain-growth polymerization remains a challenging subject in polymer chemistry. In this review, the progress of chain-growth polymerization accompanied by formation/introduction of arylene groups into polymer main chains is reviewed.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Conjugated Polymers: Theory, Synthesis, Properties, and Characterization (eds Skotheim, T. A. & Reynolds, J. R.) (CRC Press, Boca Raton, FL, USA, 2007).
Conjugated Polymers: Processing and Applications (eds Skotheim, T. A. & Reynolds, J.) (CRC Press, Boca Raton, FL, USA, 2007).
Design and Synthesis of Conjugated Polymers (eds Leclerc, M. & Morin, J.-F.) (Wiley-VCH Veriag GmbH & Co. KGaA, Weinheim, Germany, 2010).
Okamoto, K. & Luscombe, C. K. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym. Chem. 2, 2424–2434 (2011).
Handbook of Thermoplastics 2nd edn (eds Olabisi, O. & Adewale, K.) (CRC Press, Boca Raton, FL, USA, 2016).
International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology 2nd edn (the “Gold Book”), (Blackwell Scientific Publications, Oxford, UK, 1997).
Jenkins, A. D., Kratochvíl, P., Stepto, R. F. T. & Suter, U. W. Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287–2311 (1996).
Bunz, U. H. F., Mäker, D. & Porz, M. Alkene metathesis - a tool for the synthesis of conjugated polymers. Macromol. Rapid Commun. 33, 886–910 (2012).
Yokozawa, T. & Yokoyama, A. Chain-growth polycondensation for well-defined condensation polymers and polymer architecture. Chem. Rec. 5, 47–57 (2005).
Yokoyama, A. & Yokozawa, T. Converting step-growth to chain-growth condensation polymerization. Macromolecules 40, 4093–4101 (2007).
Yokoyama, A. & Yokozawa, T. Development of catalyst-transfer condensation polymerization. synthesis of π-conjugated polymers with controlled molecular weight and low polydispersity. J. Polym. Sci. A Polym. Chem. 46, 753–765 (2008).
Osaka, I & McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008).
Yokozawa, T. & Yokoyama, A. Chain-growth condensation polymerization for the synthesis of well-defined condensation polymers and π-conjugated polymers. Chem. Rev. 109, 5595–5619 (2009).
Kiriy, A., Senkovskyy, V. & Sommer, M. Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol. Rapid Commun. 32, 1503–1517 (2011).
Yokozawa, T., Nanashima, Y. & Ohta, Y. Precision synthesis of n-type π-conjugated polymers in catalyst-tyransfer condensation polymerization. ACS Macro Lett. 1, 862–866 (2012).
Yokozawa, T., Nanashima, Y., Kohno, H., Suzuki, R., Nojima, M. & Ohta, Y. Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers. Pure Appl. Chem. 85, 573–587 (2013).
Yokozawa, T. & Ohta, Y. Scope of controlled synthesis via chain-growth condensation polymerization: from aromatic polyamides to π-conjugated polymers. Chem. Commun. 49, 8281–8310 (2013).
Bryan, Z. J. & McNeil, A. J. Conjugated polymer synthesis via catalyst-transfer polycondensation (CTP): mechanism, scope, and applications. Macromolecules 46, 8395–8405 (2013).
Murarka, S. & Studer, A. Radical/anionic SRN1-type polymerization for preparation of oligoarenes. Angew. Chem. Int. Ed. 51, 12362–12366 (2012).
Iwatsuki, S. Polymerization of quinodimethane compounds. Adv. Polym. Sci. 58, 93–120 (1984).
Iwatsuki, S. in The Chemistry of Quinoide Compounds, Vol. 2 (eds Patai, S. & Rappoport, Z.) Ch. 18, 1068–1111 (Wiley, New York, NY, USA, 1988).
Greiner, A., Mang, S., Schäfer, O. & Simon, P. Poly(p-xylylene)s: synthesis, polymer analogous reactions, and perspectives on structure–property relationships. Acta Polym. 48, 1–15 (1997).
Itoh, T. & Iwatsuki, S. Polymerization behavior of electron-accepting substituted quinodimethanes. Macromol. Chem. Phys. 198, 1997–2016 (1997).
Itoh, T. Polymerizations and polymers of quinonoid monomers. Prog. Polym. Sci. 26, 1019–1059 (2001).
Itoh, T. Solution and solid-state polymerizations of substituted p-quinodimethanes and p-quinone methides. Polymer 46, 6998–7017 (2005).
Szwarc, M. Some remarks on the CH2=C(CH=CH)2C=CH2 molecule. Discuss. Faraday Soc. 2, 46–49 (1947).
Gorham, W. F. A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. A-1 4, 3027–3039 (1966).
Cho, I. & Song, K. Y. Radical ring-opening polymerization of 10-methylene-9,10-dihydroanthryl-9-spirocyclopropane. J. Polym. Sci. A Polym. Chem. 32, 1789–1791 (1994).
Mori, H., Masuda, S. & Endo, T. Ring-opening RAFT polymerization based on aromatization as driving force: synthesis of well-defined polymers containing anthracene units in the main chain. Macromolecules 39, 5976–5978 (2006).
Mori, H., Masuda, S. & Endo, T. Ring-opening copolymerization of 10-methylene-9,10-dihydroanthryl-9-spirophenylcyclopropane via free radical and RAFT processes. Macromolecules 41, 632–639 (2008).
Mori, H., Tando, I. & Tanaka, H. Synthesis and optoelectronic properties of alternating copolymers containing anthracene unit in the main chain by radical ring-opening polymerization. Macromolecules 43, 7011–7020 (2010).
Nakabayashi, K., Inoue, S., Abiko, Y. & Mori, H. Polymers composed of alternating anthracene and pyridine containing units by radical ring-opening polymerization: controlled synthesis, optical properties, and metal complexes. Macromolecules 46, 4790–4798 (2013).
Cho, I. & Kim, W. T. Exploratory ring-opening polymerization. XII. polymerization of substituted spiro[2,5]octa-4,7-diene-6-ones and spiro[cyclopropane-1,4'-(1'-naphthalenone)]. J. Polym. Sci. C Polym. Lett 24, 109–111 (1986).
Cho, I. & Kim, W. T. Polymerization systems driven by aromatization energy: anionic polymerization of 4-allylidene-2,6-dimethyl-2,5-cyclohexadien-1-one and spiro[2,5]octadienone derivatives. J. Polym. Sci. A Polym. Chem 25, 2791–2798 (1987).
Hauser, C. F. & Zutty, N. I. Quinone copolymerization. I. reactions of p-chloranil, p-benzoquinone, and 2,5-dimethyl-p-benzoquinone with vinyl monomers under free-radical initiation. J. Polym. Sci. A-1 8, 1385–1401 (1970).
Hauser, C. F. & Zutty, N. I. Quinone copolymerization. III. reactions of 2,5,7,10-tetrachlorodiphenoquinone, o-chloranil, and 2,3-dichloro-5,6-dicyano-p-benzoquinone with vinyl monomers under free-radical initiation. Macromolecules 4, 478–482 (1971).
Iwatsuki, S. & Itoh, T. Alternating copolymerization of 2,3-dichloro-5,6-dicyano-p-benzoquinone with styrene and polymerization behavior with vinyloxy compounds. J. Polym. Sci. Polym. Chem. Ed 18, 2971–2982 (1980).
Iwatsuki, S., Itoh, T., Itoh, H. & Kubo, M. Polymerization behavior of N,7,7-tricyanobenzoquinone methide imine. Macromolecules 23, 2423–2427 (1990).
Iwatsuki, S. & Itoh, T. Polymerization behavior of p-quinone bis(benzenesulfonimide) as an acceptor monomer. Macromolecules 17, 1425–1431 (1984).
Itoh, T., Matsunaga, Y., Kubo, M. & Iwatsuki, S. Amphoteric behavior of substituted p-benzoquinone diimines in alternating copolymerization. Macromolecules 28, 6357–6360 (1995).
Vilbrandt, N., Nickel, S., Immel, S., Rehahn, M., Stegmaier, K., Melzer, C. & von Seggern, H. Poly(para-phenylene vinylene)s in Materials Science and Technology, 901–922 (Wiley-VCH, Weinheim, Germany, 2013).
Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G. & Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 109, 897–1091 (2009).
Blayney, A. J., Perepichka, I. F., Wudl, F. & Perepichka, D. F. Advances and challenges in the synthesis of poly(p-phenylene vinylene)-based polymers. Isr. J. Chem. 54, 674–688 (2014).
Lee, Y., Liang, Y. & Yu, L. The Heck polycondensation for functional polymers. Synlett 18, 2879–2893 (2006).
Carsten, B., He, F., Son, H. J., Xu, T. & Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 111, 1493–1528 (2011).
Junkers, T., Vandenbergh, J., Adriaensens, P., Lutsen, L. & Vanderzande, D. Synthesis of poly(p-phenylene vinylene) materials via the precursor routes. Polym. Chem. 3, 275–285 (2012).
Conticello, V. P., Gin, D. L. & Grubbs, R. H. Ring-opening metathesis polymerization of substituted bicyclo[2.2.2]octadienes: a new precursor route to poly(1,4-phenylenevinylene). J. Am. Chem. Soc. 114, 9708–9710 (1992).
Pu, L., Wagaman, M. W. & Grubbs, R. H. Synthesis of poly(1,4-naphthylenevinylenes): metathesis polymerization of benzobarrelenes. Macromolecules 29, 1138–1143 (1996).
Tasch, S., Graupner, W., Leising, G., Pu, L., Wagner, M. W. & Grubbs, R. H. Red-orange electroluminescence with new soluble and air-stable poly(naphthalene-vinylene)s. Adv. Mater. 7, 903–906 (1995).
Wagaman, M. W. & Grubbs, R. H. Synthesis of PNV homo- and copolymers by a ROMP precursor route. Synth. Metals 84, 327–328 (1997).
Jones, R. R. & Bergman, R. G. p-Benzyne. generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 94, 660–661 (1972).
Kovacic, P. & Jones, M. B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem. Rev. 87, 357–379 (1987).
Tour, J. M. Soluble oligo- and polyphenylenes. Adv. Mater. 6, 190–198 (1994).
Sander, W. m-Benzyne and p-benzyne. Acc. Chem. Res. 32, 669–676 (1999).
John, J. A. & Tour, J. M. Synthesis of polyphenylenes and polynaphthalenes by thermolysis of enediynes and dialkynylbenzenes. J. Am. Chem. Soc. 116, 5011–5012 (1994).
Xiao, Y & Hu, A. Bergman cyclization in polymer chemistry and material science. Macromol. Rapid Commun. 32, 1688–1698 (2011).
Sun, Q., Zhang, C., Li, Z., Kong, H., Tan, Q., Hu, A. & Xu, W. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).
Marvel, C. S. & Hartzell, G. E. Preparation and aromatization of poly-1,3-cyclohexadiene. J. Am. Chem. Soc. 81, 448–452 (1959).
Frey, D. A., Hasegawa, M. & Marvel, C. S. Preparation and aromatization of poly-1,3-cyclohexadiene. II. J. Polym. Sci. A 1, 2057–2065 (1963).
Lefebvre, G. & Dawans, F. 1,3-Cyclohexadiene polymers. part I. preparation and aromatization of poly-1,3-cyclohexadiene. J. Polym. Sci. A 2, 3277–3295 (1964).
Cassidy, P. E., Marvel, C. S. & Ray, S. Preparation and aromatization of poly-1,3-cyclohexadiene and subsequent crosslinking. III. J. Polym. Sci. A 3, 1553–1565 (1965).
Natori, I. Synthesis of polymers with an alicyclic structure in the main chain. Living anionic polymerization of 1,3-cyclohexadiene with the n-butyllithium/N,N,N',N'-tetramethylethylenediamine system. Macromolecules 30, 3696–3697 (1997).
Natori, I., Imaizumi, K., Yamagishi, H. & Kazunori, M. Hydrocarbon polymers containing six-membered rings in the main chain. microstructure and properties of poly(1,3-cyclohexadiene). J. Polym. Sci. B Polym. Phys. 36, 1657–1668 (1998).
Natori, I & Inoue, S. Anionic polymerization of 1,3-cyclohexadiene with alkyllithium/amine systems. characteristics of n-butyllithium/N,N,N',N'-tetramethylethylenediamine system for living anionic polymerization. Macromolecules 31, 4687–4694 (1998).
Hong, K. & Mays, J. W. 1,3-Cyclohexadiene polymers. 1. anionic polymerization. Macromolecules 34, 782–786 (2001).
Natori, I. & Sato, H. Oxidation of poly(1,3-cyclohexadiene): influence of the polymer chain structure. J. Polym. Sci. A Polym. Chem. 44, 837–845 (2006).
François, B. & Zhong, X. F. Synthesis, characterization and doping of soluble diblock and triblock copolymers including polyparaphenylene sequences. Synth. Metals 41, 955–958 (1991).
Widawski, G., Rawiso, M. & François, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994).
François, B., Widawski, G., Rawiso, M. & Cesar, B. Block-copolymers with conjugated segments: synthesis and structural characterization. Synth. Metals 69, 463–466 (1995).
Natori, I., Natori, S., Tsuchiya, K. & Ogino, K. Synthesis of novel semiconducting polymers consisting of p-phenylene, p-phenylenevinylene, and styrylamine structures: copolymerization and dehydrogenation of 1,3-cyclohexadiene and 4-diphenylaminostyrene. Macromolecules 44, 256–262 (2011).
François, B., Izzillo, S. & Iratçabal, P. Substituted PPV block copolymer from anionically prepared precursor. Synth. Metals 102, 1211–1212 (1999).
Ederlé, Y. & Mathis, C. Grafting of anionic polymers onto C60 in polar and nonpolar solvents. Macromolecules 30, 2546–2555 (1997).
Mignard, E., Hiorns, R. C. & François, B. Synthesis and characterization of star copolymers consisting of fullerene and conjugated polyphenylene: 6-star-C60[styrene–poly(1,4-phenylene)-block-polystyrene] and 6-star-C60[polystyrene-block-poly(1,4-phenylene)]. Macromolecules 35, 6132–6141 (2002).
Ballard, D. G. H., Courtis, A., Shirley, I. M. & Taylor, S. C. A biotech route to polyphenylene. J. Chem. Soc. Chem. Commun. 954–955 (1983).
Ballard, D. G. H., Courtis, A., Shirley, I. M. & Taylor, S. C. Synthesis of polyphenylene from a cis-dihydrocatechol biologically produced monomer. Macromolecules 21, 294–304 (1988).
McKean, D. R. & Stille, J. K. Electrical properties of poly(5,6-dihydroxy-2-cyclohexen-1,4-ylene) derivatives. Macromolecules 20, 1787–1792 (1987).
Gin, D. L., Conticello, V. P. & Grubbs, R. H. Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 1. precursor design and synthesis. J. Am. Chem. Soc. 116, 10507–10519 (1994).
Gin, D. L., Conticello, V. P. & Grubbs, R. H. Transition-metal-catalyzed polymerization of heteroatom-functionalized cyclohexadienes: stereoregular precursors to poly(p-phenylene). J. Am. Chem. Soc. 114, 3167–3169 (1992).
Gin, D. L., Conticello, V. P. & Grubbs, R. H. Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 2. the effects of polymer stereochemistry and acid catalysts on precursor aromatization: a characterization study. J. Am. Chem. Soc. 116, 10934–10947 (1994).
Fisher, I. P. & Lossing, F. P. Ionization potential of benzyne. J. Am. Chem. Soc. 85, 1018–1019 (1963).
Berry, R. S., Clardy, J. & Schafer, M. E. Decomposition of benzenediazonium-3-carboxylate: transient 1,3-dehydrobenzene. Tetrahedron Lett. 6, 1011–1017 (1965).
Sander, W., Exner, M., Winkler, M., Balster, A., Hjerpe, A., Kraka, E. & Cremer, D. Vibrational spectrum of m-benzyne: a matrix isolation and computational study. J. Am. Chem. Soc. 124, 13072–13079 (2002).
Stumetz, K. S., Nadeau, J. T. & Cremeens, M. E. Potential nonadiabatic reactions: ring-opening 4,6-dimethylidenebicyclo[3.1.0]hex-2-ene derivatives to aromatic reactive intermediates. J. Org. Chem. 78, 10878–10884 (2013).
Rule, M., Matlin, A. R., Hilinski, E. F., Dougherty, D. A. & Berson, J. A. m-Quinomethane: synthesis of a covalent-biradicaloid pair of valence tautomers. J. Am. Chem. Soc. 101, 5098–5099 (1979).
Itoh, T., Matsumura, Y. & Kubo, M. Polymerization of meta-naphthoquinone methide: 3,4-benzo-6-methylenebicyclo[3.1.0]hex-3-ene-2-one. J. Polym. Sci. A Polym. Chem. 35, 741–746 (1997).
Segura, J. L. & Martín, N. o-Quinodimethanes: efficient intermediates in organic synthesis. Chem. Rev. 99, 3199–3246 (1999).
Errede, I. A. The chemistry of xylylenes. X. some polymers and telomers of spiro-di-o-xylylene. J. Polym. Sci. 49, 253–265 (1961).
Farona, M. F. Benzocyclobutenes in polymer chemistry. Prog. Polym. Sci. 21, 505–555 (1996).
Chino, K. & Endo, T. Prediction of thermal isomerization temperatures of substituted benzocyclobutenes to o-quinodimethanes by semi-empirical molecular orbital calculation. Lett. Org. Chem. 8, 138–142 (2011).
Chino, K., Takata, T. & Endo, T. Polymerization of o-quinodimethanes, 1. radical polymerization of 1-methoxy-o-quinodimethane formed in situ by thermal isomerization of 1-methoxy-benzocyclobutene. Macromol. Rapid Commun. 17, 339–345 (1996).
Chino, K., Takata, T. & Endo, T. Polymerization of o-quinodimethanes bearing electron-donating groups in situ formed by thermal isomerization of benzocyclobutenes. Macromolecules 30, 6715–6720 (1997).
Chino, K. & Endo, T. Polymerization of o-quinodimethanes. V. ionic polymerization of o-quinodimethanes generated by thermal isomerization of corresponding benzocyclobutenes. J. Polym. Sci. A Polym. Chem. 46, 844–850 (2008).
Chino, K., Takata, T. & Endo, T. Polymerization of o-quinodimethanes. III. polymerization of o-quinodimethanes bearing electron-withdrawing groups formed in situ by thermal ring-opening isomerization of corresponding benzocyclobutenes. J. Polym. Sci. A Polym. Chem. 37, 1555–1563 (1999).
Chino, K. & Endo, T. Polymerization of o-quinodimethanes. IV. radical polymerization of 1-cyano-o-quinodimethane in the presence of TEMPO. J. Polym. Sci. A Polym. Chem. 38, 3434–3439 (2000).
Chino, K., Takata, T. & Endo, T. A novel group transfer polymerization of 1-trimethylsiloxybenzocyclobutene via hetero Diels-Alder reaction. Macromol. Rapid Commun. 17, 163–168 (1996).
Ito, Y., Ihara, E., Murakami, M. & Shiro, M. New living polymerization of 1,2-diisocyanoarenes via (quinoxalinyl)palladium complexes. synthesis of poly(2,3-quinoxaline). J. Am. Chem. Soc. 112, 6446–6447 (1990).
Ito, Y., Ihara, E. & Murakami, M. Enantioselective polymerization of 1,2-diisocyanoarenes—synthesis of optically active, helical poly(quinoxaline-2,3-diyl)s. Angew. Chem. Int. Ed. Engl. 31, 1509–1510 (1992).
Suginome, M., Yamamoto, T. & Nagata, Y. Poly(quinoxaline-2,3-diyl)s: a fascinating helical macromolecular scaffold for new chiral functions. J. Synth. Org. Chem. Jpn. 73, 1141–1155 (2015).
Suginome, M., Yamamoto, T., Nagata, Y., Yamada, T. & Akai, Y. Catalytic asymmetric synthesis using chirality-switchable helical polymer as a chiral ligand. Pure Appl. Chem. 84, 1759–1769 (2012).
Yamamoto, T., Akai, Y. & Suginome, M. Chiral palladacycle catalysts generated on a single-handed helical polymer skeleton for asymmetric arylation ring opening of 1,4-epoxy-1,4-dihydronaphthalene. Angew. Chem. Int. Ed. 53, 12785–12788 (2014).
Ke, Y.-Z., Nagata, Y., Yamada, T. & Suginome, M. Majority-rules-type helical poly(quinoxaline-2,3-diyl)s as highly efficient chirality-amplification systems for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 9333–9337 (2015).
Nagata, Y., Yamada, T., Adachi, T., Akai, Y., Yamamoto, T. & Suginome, M. Solvent-dependent switch of helical main-chain chirality in sergeants-and-soldiers-type poly(quinoxaline-2,3-diyl)s: effect of the position and structures of the ‘‘sergeant’’ chiral units on the screw-sense induction. J. Am. Chem. Soc. 135, 10104–10113 (2013).
Nagata, Y., Nishikawa, T. & Suginome, M. Poly(quinoxaline-2,3-diyl)s bearing (S-3-octyloxymethyl side chains as an efficient amplifier of alkane solvent effect leading to switch of main-chain helical chirality. J. Am. Chem. Soc. 136, 15901–15904 (2014).
Nagata, Y., Nishikawa, T. & Suginome, M. Exerting control over the helical chirality in the main chain of sergeants-and-soldiers-type poly(quinoxaline-2,3-diyl)s by changing from random to block copolymerization protocols. J. Am. Chem. Soc. 137, 4070–4073 (2015).
Nagata, Y., Takeda, R. & Suginome, M. Pressure-dependent helix inversion of poly(quinoxaline-2,3-diyl)s containing chiral side chains in non-aqueous solvents. Chem. Commun. 51, 11182–11185 (2015).
Shintani, R., Iino, R. & Nozaki, K. Rhodium-catalyzed polymerization of 3,3-diarylcyclopropenes involving a 1,4-rhodium migration. J. Am. Chem. Soc. 136, 7849–7852 (2014).
Stoermer, R. & Kahlert, B. Ueber das 1- und 2-brom-cumaron. Ber. Dtsch. Chem. Ges. 35, 1633–1640 (1902).
Wenk, H. H., Winkler, M. & Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 42, 502–528 (2003).
Hoffmann, R. W. Dehydrobenzene and Cycloalkyne (Academic Press, New York, NY, USA, 1967).
Pellissier, H. & Santelli, M. The use of arynes in organic synthesis. Tetrahedron 59, 701–730 (2003).
Sanz, R. Recent applications of aryne chemistry to organic synthesis. a review. Org. Prep. Proced. Int. 40, 215–291 (2008).
Pérez, D., Peña, D. & Guitián, E. Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. Eur. J. Org. Chem. 5981–6013 (2013).
Ihara, E., Kurokawa, A., Koda, T., Muraki, T., Itoh, T. & Inoue, K. Benzyne as a monomer for polymerization: alternating copolymerization of benzyne and pyridine to give novel polymers with o-phenylene and 2,3-dihydropyridine units in the main chain. Macromolecules 38, 2167–2172 (2005).
Mizukoshi, Y., Mikami, K. & Uchiyama, Y. Aryne polymerization enabling straightforward synthesis of elusive poly(ortho-arylene)s. J. Am. Chem. Soc. 137, 74–77 (2015).
Lautens, M. Ring opening reactions of oxabicyclic compounds as a route to cyclic and acyclic compounds with multiple stereocenters. Synlett 177–185 (1993).
Chiu, P. & Lautens, M. Using ring-opening reactions of oxabicyclic compounds as a strategy in organic synthesis. Top. Curr. Chem. 190, 1–85 (1997).
Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).
Rayabarapu, D. K. & Cheng, C.-H. New catalytic reactions of oxa- and azabicyclic alkenes. Acc. Chem. Res. 40, 971–983 (2007).
Safir, A. L. & Novak, B. M. Air- and water-stable 1,2-vinyl-insertion polymerizations of bicyclic olefins: a simple precursor route to polyacetylene. Macromolecules 26, 4072–4073 (1993).
Safir, A. L. & Novak, B. M. Living 1,2-olefin-insertion polymerizations initiated by palladium(II) alkyl complexes: block copolymers and a route to polyacetylene-hydrocarbon diblocks. Macromolecules 28, 5396–5398 (1995).
Zhang, S.-W. & Takahashi, S. Rhodium-catalyzed copolymerization of norbornadiene derivatives with carbon monoxide. Chem. Commun. 315–316 (2000).
Zhang, S.-W., Kaneko, T. & Takahashi, S. Rhodium-catalyzed copolymerization of norbornadienes and norbornenes with carbon monoxide. Macromolecules 33, 6930–6936 (2000).
Peng, F., Fan, B., Shao, Z., Pu, X., Li, P. & Zhang, H. Cu(OTf)2-catalyzed isomerization of 7-oxabicyclic alkenes: a practical route to the synthesis of 1-naphthol derivatives. Synthesis 3043–3046 (2008).
Ballantine, M., Menard, M. L. & Tam, W. Isomerization of 7-oxabenzonorbornadienes into naphthols catalyzed by [RuCl2(CO)3]2 . J. Org. Chem. 74, 7570–7573 (2009).
Ito, S., Takahashi, K. & Nozaki, K. Formal aryne polymerization: use of [2.2.1]oxabicyclic alkenes as aryne equivalents. J. Am. Chem. Soc. 136, 7547–7550 (2014).
Walter, M. D., Moorhouse, R. A., Urbin, S. A., White, P. S. & Brookhart, M. γ-Agostic species as key intermediates in the vinyl addition polymerization of norbornene with cationic (allyl)Pd catalysts: synthesis and mechanistic insights. J. Am. Chem. Soc. 131, 9055–9069 (2009).
Ito, S., Wang, W., Nishimura, K. & Nozaki, K. Formal aryne/carbon monoxide copolymerization to form aromatic polyketones/polyketals. Macromolecules 48, 1959–1962 (2015).
Yonezawa, N. & Okamoto, A. Synthesis of wholly aromatic polyketones. Polym. J. 41, 899–928 (2009).
Mullins, M. J. & Woo, E. P. The synthesis and properties of poly(aromatic ketones). J. Macromol. Sci. Rev. Macromol. Chem. Phys. C27, 313–341 (1987).
Yang, J. & Gibson, H. W. Polyketone synthesis involving nucleophilic substitution via carbanions derived from bis(α-amino nitrile)s. 2. wholly aromatic polyketones without ether linkages. Macromolecules 30, 5629–5633 (1997).
Gibson, H. W. & Dotson, D. L. Wholly aromatic polymeric ketones from bis-(α-aminonitrile)s via soluble poly(bisaminonitrile)s. Polymer 39, 6483–6487 (1998).
Yang, J. & Gibson, H. W. A polyketone synthesis involving nucleophilic substitution via carbanions derived from bis(α-aminonitrile)s. 5. a new, well-controlled route to ‘‘long’’ bisphenol and activated aromatic dihalide monomers. Macromolecules 32, 8740–8746 (1999).
Yonezawa, N., Miyata, S., Nakamura, T., Mori, S., Ueha, Y. & Katakai, R. Synthesis of wholly aromatic polyketones using 2,2'-dimethoxybiphenyl as the acyl-acceptant monomer. Macromolecules 26, 5262–5263 (1993).
Yonezawa, N., Ikezaki, T., Nakamura, H. & Maeyama, K. Successful synthesis of wholly aromatic polyketones via nickel-mediated aromatic coupling polymerization. Macromolecules 33, 8125–8129 (2000).
Drent, E. & Budzelaar, P. H. M. Palladium-catalyzed alternating copolymerization of alkenes and carbon monoxide. Chem. Rev. 96, 663–681 (1996).
Nakamura, A., Ito, S. & Nozaki, K. Coordination−insertion copolymerization of fundamental polar monomers. Chem. Rev. 109, 5215–5244 (2009).
Ito, S. & Nozaki, K. Coordination−insertion copolymerization of polar vinyl monomers by palladium catalysts. Chem. Rec. 10, 315–325 (2010).
Nakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination–insertion copolymerization of polar vinyl monomers. Acc. Chem. Res. 46, 1438–1449 (2013).
Carrow, B. P. & Nozaki, K. Transition-metal-catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules 47, 2541–2555 (2014).
Ito, S., Wang, W. & Nozaki, K. Formal aryne/ethylene copolymerization to form polyethylene containing o-arylene units in the main chain. Polym. J. 47, 474–480 (2015).
Ito, S., Munakata, K., Nakamura, A. & Nozaki, K. Copolymerization of vinyl acetate with ethylene by palladium/alkylphosphine–sulfonate catalysts. J. Am. Chem. Soc. 131, 14606–14607 (2009).
Ito, S., Kanazawa, M., Munakata, K., Kuroda, J., Okumura, Y. & Nozaki, K. Coordination−insertion copolymerization of allyl monomers with ethylene. J. Am. Chem. Soc. 133, 1232–1235 (2011).
Ota, Y., Ito, S., Kuroda, J., Okumura, Y. & Nozaki, K. Quantification of the steric influence of alkylphosphine–sulfonate ligands on polymerization, leading to high-molecular-weight copolymers of ethylene and polar monomers. J. Am. Chem. Soc. 136, 11898–11901 (2014).
Johnson, L. K., Mecking, S. & Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc. 118, 267–268 (1996).
Mecking, S., Johnson, L. K., Wang, L. & Brookhart, M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J. Am. Chem. Soc. 120, 888–899 (1998).
Younkin, T. R., Connor, E. F., Henderson, J. I., Friedrich, S. K., Grubbs, R. H. & Bansleben, D. A. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science 287, 460–462 (2000).
Carrow, B. P. & Nozaki, K. Synthesis of functional polyolefins using cationic bisphosphine monoxide-palladium complexes. J. Am. Chem. Soc. 134, 8802–8805 (2012).
Acknowledgements
I thank Professor Kyoko Nozaki (UTokyo) for her generous support and encouragement and all the co-workers and collaborators for their contributions to the work cited in this review. I also thank the reviewers of the manuscript for their valuable comments and suggestions given during the review process. This work was financially supported by Grant-in-Aid for Exploratory Research (No. 24655096) from Ministry of Education, Culture, Sports, Science and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS), the Ogasawara Foundation for the Promotion of Science & Engineering, the TonenGeneral Sekiyu Foundation and the Yazaki Memorial Foundation for Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no conflict of interest.
Rights and permissions
About this article
Cite this article
Ito, S. Chain-growth polymerization enabling formation/introduction of arylene groups into polymer main chains. Polym J 48, 667–677 (2016). https://doi.org/10.1038/pj.2016.18
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.18