Abstract
Photonic crystals have attracted great attention because of their potential applications in optical materials. When an optically birefringent liquid crystal is incorporated in photonic crystals, structural coloration can be easily changed by external stimuli, such as electric field, annealing and light irradiation. In this review, our recent work on the phototunability of photonic crystals consisting of azobenzene-containing polymers is discussed, and their birefringence properties based on their polymeric molecular structures are reviewed.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Guo, J., Huard, C. M., Yang, Y., Shin, Y. J., Lee, K. T & Guo, L. J. ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes. Adv. Opt. Mater. 2, 435–441 (2014).
Xing, H., Li, J., Guo, J. & Wei, J. Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer. J. Mater. Chem. C 3, 4424–4430 (2015).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).
Busch, K., Lölkes, S., Wehrspohn, R. B. & Föll, H. Photonic Crystals. Advances in Design, Fabrication and Characterization (Wiley: Weinheim, Germany, 2004)
Ozaki, M., Shimoda, Y., Kasano, M. & Yoshino, K. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 14, 514–518 (2002).
Leonard, S. W., Mondia, J. P., van Driel, H. M., Toader, O., John, S, Busch, K, Birner, A, Gösele, U & Lehmann, V. Tunable two-dimensional photonic crystals using liquid crystal infiltration. Phys. Rev. B 61, R2389 (2000).
Gu, Z.-Z., Kubo, S., Fujishima, A. & Sato, O. Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure. Appl. Phys. A 74, 127–129 (2002).
King, J. S., Graugnard, E. & Summers, C. J. TiO2 inverse opals fabricated using low-temperature atomic layer deposition. Adv. Mater. 17, 1010–1013 (2005).
Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000).
Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally Switchable Periodicities and Diffraction from Novel Mesoscopically Ordered Materials. Defense Technical Information Center Technical Report No. 5 (DTIC Document, 1996).
Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).
Pan, G., Kesavamoorthy, R. & Asher, S. A. Nanosecond switchable polymerized crystalline colloidal array Bragg diffracting materials. J. Am. Chem. Soc. 120, 6525–6530 (1998).
Lee, K. & Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122, 9534–9537 (2000).
Reese, C. E., Mikhonin, A. V., Kamenjicki, M., Tikhonov, A. & Asher, S. A. Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126, 1493–1496 (2004).
Fudouzi, H. & Xia, Y. Photonic papers and inks: color writing with colorless materials. Adv. Mater. 15, 892–896 (2003).
Fudouzi, H. & Xia, Y. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir. 19, 9653–9660 (2003).
Arsenault, A. C., MĂguez, H., Kitaev, V., Ozin, G. A. & Manners, I. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic Ink (P-Ink). Adv. Mater. 15, 503–507 (2003).
Yoshino, K., Shimoda, Y., Kawagishi, Y., Nakayama, K. & Ozaki, M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 75, 932 (1999).
Busch, K. & John, S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 83, 967 (1999).
Meng, Q. B., Fu, C. H., Hayami, S., Gu, Z. Z., Sato, O. & Fujishima, A . Effects of external electric field upon the photonic band structure in synthetic opal infiltrated with liquid crystal. J. Appl. Phys. 89, 5794–5796 (2001).
Kang, D., Maclennan, J. E., Clark, N. A., Zakhidov, A. A. & Baughman, R. H. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. Phys. Rev. Lett. 86, 4052 (2001).
Graugnard, E., King, J. S., Jain, S., Summers, C. J., Zhang-Williams, Y. & Khoo, I. C. Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals. Phys. Rev. B 72, 233105 (2005).
Tolmachev, V. A., Perova, T. S., Grudinkin, S. A., Melnikov, V. A., Astrova, E. V. & Zharova, Yu. A. Electrotunable in-plane one-dimensional photonic structure based on silicon and liquid crystal. Appl. Phys. Lett. 90, 011908 (2007).
Liu, C.-Y., Peng, Y.-T., Wang, J.-Z. & Chen, L.-W. Creation of tunable bandgaps in a three-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal. Phys. B Condens. Matter 388, 124–129 (2007).
Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).
Yue, Y., Kurokawa, T., Haque, M. A., Nakajima, T., Nonoyama, T., Li, X., Kajiwara, I. & Gong, J. P. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 5, 4659 (2014).
Moritsugu, M., Kim, S., Kubo, S., Ogata, T., Nonaka, T., Sato, O. & Kurihara, S. Photoswitching properties of photonic crystals infiltrated with polymer liquid crystals having azobenzene side chain groups with different methylene spacers. React. Funct. Polym. 71, 30–35 (2011).
Nikolova, L., Todorov, T., Ivanov, M., Andruzzi, F., Hvilsted, S. & Ramanujam, P. S. Photoinduced circular anisotropy in side-chain azobenzene polyesters. Opt. Mater. 8, 255–258 (1997).
de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals, (Clarendon Press: New York, 1993).
Sekine, C., Ishitobi, M., Iwakura, K., Minai, M. & Fujisawa, K. Novel high birefringence dibenzothiophenylacetylene liquid crystals. Liq. Cryst. 29, 355–367 (2002).
Wu, S.-T., Hsu, C.-S. & Chuang, Y.-Y. Room temperature bis-tolane liquid crystals. Jpn J. Appl. Phys. 38, L286 (1999).
Meier, H., Mühling, B. & Kolshorn, H. Red-and blue-shifts in oligo (1, 4-phenyleneethynylene)s having terminal donor–acceptor substitutions. Eur. J. Org. Chem. 2004, 1033–1042 (2004).
Moritsugu, M., Shirota, T., Kubo, S., Ogata, T., Sato, O. & Kurihara, S. Enhanced photochemical-shift of reflection band from an inverse opal film based on larger birefringent polymer liquid crystals: effect of tolane group on the photochemical shift behavior. J. Polym. Sci. Part B 47, 1981–1990 (2009).
Fukuda, T., Kim, J. Y., Barada, D. & Yase, K. Photoinduced cooperative molecular reorientation on azobenzene side-chain-type copolymers. J. Photochem. Photobiol. Chem. 183, 273–279 (2006).
Kim, J. Y. & Fukuda, T. Synthesis and optical properties of Azo-methacrylic copolymers with rigid tolane moiety. React. Funct. Polym. 67, 693–699 (2007).
Meng, X., Natansohn, A., Barrett, C. & Rochon, P. Azo polymers for reversible optical storage. 10. Cooperative motion of polar side groups in amorphous polymers. Macromolecules 29, 946–952 (1996).
Buffeteau, T., Natansohn, A., Rochon, P. & Pezolet, M. Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy. Macromolecules 29, 8783–8790 (1996).
Voit, B. I. Dendritic polymers: from aesthetic macromolecules to commercially interesting materials. Acta Polym. 46, 87–99 (1995).
Kim, S., Inoue, W., Hirano, S., Yagi, R., Kuwahara, Y., Ogata, T. & Kurihara, S. Synthesis and optical properties of azobenzene side chain polymers derived from the bifunctional fumaric acid and itaconic acid. Polymer 55, 871–877 (2014).
Ujiie, S. & Iimura, K. Ammonium halide type thermotropic liquid-crystalline polyethylenimines and those low-mass model compounds. Chem. Lett. 19, 995–998 (1990).
Ujiie, S. & Yano, Y. Thermotropic and lyotropic behavior of novel amphiphilic liquid crystals having hydrophilic poly (ethyleneimine) units. Chem. Commun. 1, 79–80 (2000).
Kim, S., Nakamura, T., Yagi, R., Kuwahara, Y., Ogata, T., Ujiie, S. & Kurihara, S. Photo-response orientation behaviors of polyethylene imine backbone structures with azobenzene side chains. Polym. Int. 63, 733–740 (2014).
Kamruzzaman, M., Kim, S., Kuwahara, Y., Ogata, T. & Kurihara, S. Thermal and photo alignment behavior of polyethylene imine having methoxy substituent azobenzene side chain group. Open J. Polym. Chem. 3, 92 (2013).
Kamruzzaman, M., Kuwahara, Y., Ogata, T., Ujiie, S. & Kurihara, S. Substituent effects on thermal and photo-alignment behavior of poly (ethylene imine) s carrying azobenzene side groups. Polym. Int. 60, 730–737 (2011).
Moritsugu, M., Ishikawa, T., Kawata, T., Ogata, T., Kuwahara, Y. & Kurihara, S. Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper. Macromol. Rapid Commun. 32, 1546–1550 (2011).
Yagi, R., Katae, H., Kuwahara, Y., Kim, S. N., Ogata, T. & Kurihara, S. On-off switching properties of one-dimensional photonic crystals consisting of azo-functionalized polymer liquid crystals having different methylene spacers and polyvinyl alcohol. Polymer 55, 1120–1127 (2014).
Yagi, R., Iwamoto, H., Kuwahara, Y., Kim, S., Ogata, T. & Kurihara, S. On/off switching of structural color by using multi-bilayered films containing copolymers having azobenzene and biphenyl side groups. RSC Adv. 5, 84762–84769 (2015).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Kim, S., Ogata, T. & Kurihara, S. Azobenzene-containing polymers for photonic crystal materials. Polym J 49, 407–412 (2017). https://doi.org/10.1038/pj.2017.3
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2017.3
This article is cited by
-
Poly(lactic acid)/opal-methacryloylpropyltrimethoxysilane-polystyrene graft polymer composites: preparation, characterization, and performance
Iranian Polymer Journal (2020)
-
Functional liquid-crystalline polymers and supramolecular liquid crystals
Polymer Journal (2018)