Abstract
We present a focused review of photoresist strategies that have been studied over the past few decades driven by the demands of Moore’s law. Selected results are discussed with emphasis on the choice of photoresist chemistry depending on the particulars of each radiation type or patterning strategy, while we present special architectures of photoresists that have attracted a great interest in the semiconductor field. We adopt an approach that allows for easy comparison between the different photoresist categories and we include brief discussions of a number of important preparation and property issues pertaining to key characteristics affecting resist performance.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Harita, Y., Ichikawa, M., Harada, K. & Tsunoda, T. New photoresists of cyclized butadlene polymers. Polym. Eng. Sci. 17, 372–376 (1977).
O'Brien, M. J. Novolac-based photoresists combining chemical amplification and dissolution inhibition. Polym. Eng. Sci. 29, 846–849 (1989).
Ito, H. Chemical amplification resists: history and development within IBM. IBM J. R&D 41, 119–130 (1997).
Gabor, A. H., Allen, R. D., GallagherWetmore, P. & Ober, C. K. Block and random copolymer resists designed for 193 nm lithography and environmentally friendly supercritical CO2 development. Adv. Resist Technol. Process. Xiii 2724, 410–417 (1996).
Gabor, A. H., Pruette, L. C. & Ober, C. K. Lithographic properties of poly(tert-butyl methacrylate)-based block and random copolymer resists designed for 193 nm wavelength exposure tools. Chem. Mater. 8, 2282–2290 (1996).
Zimmenrman, P. A., Byers, J., Piscani, E., Rice, B., Ober, C. K., Giannelis, E. P., Rodriguez, R., Wang, D., Whittaker, A., Blakey, I., Chen, L., Dargaville, B. & Liu, H. Development of an operational high refractive index resist for 193nm immersion lithography. Adv. Resist Mater. Process. Technol. Xxv, Pts 1 and 2 6923, 692306-1–692306-10 (2008).
Bae, Y. C., Douki, K., Yu, T., Dai, J., Schmaljohann, D., Kang, S. H., Kim, K. H., Koerner, H., Conley, W., Miller, D., Balasubramanian, R., Holl, S. & Ober, C. K. Rejuvenation of 248nm resist backbones for 157nm lithography. J. Photopolym. Sci. Technol. 14, 613–620 (2001).
Bae, Y. C., Douki, K., Yu, T. Y., Dai, J. Y., Schmaljohann, D., Koerner, H. & Ober, C. K. Tailoring transparency of imageable fluoropolymers at 157 nm by incorporation of hexafluoroisopropyl alcohol to photoresist backbones. Chem. Mater. 14, 1306–1313 (2002).
Jakubek, V., Liu, X. Q., Vohra, V. R., Douki, K., Kwark, Y. J., Ober, C. K., Markley, T. J., Robertson, E. A., Carr, R. V. C., Marsella, J. A., Conley, W., Miller, D. & Zimmerman, P. Strategies for high transparency acrylate resists for 157 nm lithography. J. Photopolym. Sci. Technol. 16, 573–580 (2003).
Vohra, V. R., Liu, X. Q., Douki, K., Ober, C. K., Conley, W., Miller, D. & Zimmerman, P. Fluoropolymer resists for 157 nm lithography. Adv. Resist Technol. Process. Xx, Pts 1 and 2 5039, 539–547 (2003).
Hamad, A. H., Houlihan, F. M., Seger, L., Chang, C. & Ober, C. K. Evaluation of fluorinated dissolution inhibitors for 157 nm lithography. Adv. Resist Technol. Process. Xx, Pts 1 and 2 5039, 558–568 (2003).
Gabor, A. H., Lehner, E. A., Mao, G. P., Schneggenburger, L. A. & Ober, C. K. Synthesis and lithographic characterization of block-copolymer resists consisting of both poly(styrene) blocks and hydrosiloxane-modified poly(diene) blocks. Chem. Mater. 6, 927–934 (1994).
Bignozzi, M. C., Ober, C. K., Novembre, A. J. & Knurek, C. Lithographic results of electron beam photoresists prepared by living free radical polymerization. Polym. Bull. 43, 93–100 (1999).
Okamura, H., Forman, D. C. & Ober, C. K. C-60-containing polymers for electron beam lithography. Polym. Bull. 71, 2395–2405 (2014).
Dai, J. Y., Ober, C. K., Wang, L., Cerrina, F. & Nealey, P. Organoelement resists for EUV lithography. Adv. Resist Technol. Process. Xix, Pts 1 and 2 4690, 1193–1202 (2002).
Dai, J. Y., Ober, C. K., Golovkina, V., Shin, J., Wang, L. & Cerrina, F. Synthesis and evaluation of novel organoelement resists for EUV lithography. Adv. Resist Technol. Process. Xx, Pts 1 and 2 5039, 1164–1172 (2003).
Kwark, Y. J., Bravo-Vasquez, J. P., Ober, C. K., Cao, H. B., Deng, H. & Meagley, R. Novel silicon containing polymers as photoresist materials for extreme UV lithography. Adv. Resist Technol. Process. Xx, Pts 1 and 2 5039, 1204–1211 (2003).
Dai, J. Y. & Ober, C. K. Novel resists with non-traditional compositions for EUV lithography. Adv. Resist Technol. Process. Xxi, Pts 1 and 2 5376, 508–516 (2004).
Kwark, Y. J., Bravo-Vasquez, J. P., Cao, H. B., Deng, H. & Ober, C. K. Silicon containing organic–inorganic hybrid materials as EUV photoresists. J. Photopolym. Sci. Technol. 18, 481–487 (2005).
Schwartz, E. L., Bosworth, J. K., Paik, M. Y. & Ober, C. K. New self-assembly strategies for next generation lithography. Adv. Resist Mater. Process. Technol. Xxvii, Pts 1 and 2 7639, 76390G-1–76390G-11 (2010).
Maeda, R., Hayakawa, T. & Ober, C. K. Dual mode patterning of fluorine-containing block copolymers through combined top-down and bottom-up lithography. Chem. Mater. 24, 1454–1461 (2012).
Jacobs, A. G., Jung, B., Ober, C. K. & Thompson, M. O. Control of PS-b-PMMA directed self-assembly registration by laser induced millisecond thermal annealing. Altern. Lithographic Technol. Vi 9049, 90492B-1–90492B-7 (2014).
Jung, B., Ober, C. K. & Thompson, M. O. Controlled roughness reduction of patterned resist polymers using laser-induced sub-millisecond heating. J. Mater. Chem. C 2, 9115–9121 (2014).
Jung, B., Satish, P., Bunck, D. N., Dichtel, W. R., Ober, C. K. & Thompson, M. O. Laser-induced sub-millisecond heating reveals distinct tertiary ester cleavage reaction pathways in a photolithographic resist polymer. ACS Nano 8, 5746–5756 (2014).
Chao, C. Y., Li, X. F. & Ober, C. K. Directing self-assembly in macromolecular systems: hydrogen bonding in ordered polymers. Pure Appl. Chem. 76, 1337–1343 (2004).
Wieberger, F., Neuber, C., Ober, C. K. & Schmidt, H. W. Tailored star block copolymer architecture for high performance chemically amplified resists. Adv. Mater. 24, 5939–5944 (2012).
Taylor, P. C., Lee, J. K., Zakhidov, A. A., Chatzichristidi, M., Fong, H. H., DeFranco, J. A., Malliaras, G. C. & Ober, C. K. Orthogonal patterning of PEDOT:PSS for organic electronics using hydrofluoroether solvents. Adv. Mater. 21, 2314(2009).
Zakhidov, A. A., Lee, J. K., Fong, H. H., DeFranco, J. A., Chatzichristidi, M., Taylor, P. G., Ober, C. K. & Malliaras, G. G. Hydrofluoroethers as orthogonal solvents for the chemical processing of organic electronic materials. Adv. Mater. 20, 3481(2008).
Lee, J. K., Taylor, P. G., Zakhidov, A. A., Fong, H. H., Hwang, H. S., Chatzichristidi, M., Malliaras, G. G. & Ober, C. K. Orthogonal processing: a novel photolithographic patterning method for organic electronics. J. Photopolym. Sci. Technol. 22, 565–569 (2009).
Tsuchiya, K., Chang, S. W., Felix, N. M., Ueda, M. & Ober, C. K. Lithography based on molecular glasses. J. Photopolym. Sci. Technol. 18, 431–434 (2005).
De Silva, A., Lee, J. -K., André, X., Felix, N. M., Cao, H. B., Deng, H. & Ober, C. K. Study of the structure–properties relationship of phenolic molecular glass resists for next generation photolithography. Chem. Mater. 20, 1606–1613 (2008).
De Silva, A. & Ober, C. K. Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists. J. Mater. Chem. 18, 1903(2008).
Dai, J. Y., Chang, S. W., Hamad, A., Yang, D., Felix, N. & Ober, C. K. Molecular glass resists for high-resolution patterning. Chem. Mater. 18, 3404–3411 (2006).
Chang, S. W., Ayothi, R., Bratton, D., Yang, D., Felix, N., Cao, H. B., Deng, H. & Ober, C. K. Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography. J. Mater. Chem. 16, 1470–1474 (2006).
Felix, N. M., De Silva, A. & Ober, C. K. Calix[4]resorcinarene derivatives as high-resolution resist materials for supercritical CO2 processing. Adv. Mater. 20, 1303(2008).
Andre, X., Lee, J. K., De Silva, A., Felix, N., Ober, C. K., Cao, H. B., Deng, H., Kudo, H., Watanabe, D. & Nishikubo, T. Phenolic molecular glasses as resists for next generation lithography-art. no. 65194B. Adv. Resist Mater. Process. Technol. XXIV 6519, B5194–B5194 (2007).
Sha, J., Lee, J. K. & Ober, C. K. Molecular glass resists developable in supercritical carbon dioxide for 193 nm lithography. Adv. Resist Mater. Process. Technol. Xxvi 7273, 72732T-1–72732T-8 (2009).
Allen, R. D., Trikeriotis, M., Bae, W. J., Schwartz, E., Krysak, M., Lafferty, N., Xie, P., Smith, B., Zimmerman, P. A., Ober, C. K. & Giannelis, E. P. Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. Proc. SPIE 7639, 76390E(2010).
Allen, R. D., Krysak, M., Somervell, M. H., Trikeriotis, M., Schwartz, E., Lafferty, N., Xie, P., Smith, B., Zimmerman, P., Montgomery, W., Giannelis, E. & Ober, C. K. Development of an inorganic nanoparticle photoresist for EUV, e-beam, and 193nm lithography. Proc. SPIE 7972, 79721C(2011).
Krysak, M., Trikeriotis, M., Schwartz, E., Lafferty, N., Xie, P., Smith, B., Zimmerman, P., Montgomery, W., Giannelis, E. & Ober, C. K. Development of an inorganic nanoparticle photoresist for EUV, E-beam and 193 nm lithography. Adv. Resist Mater. Process.Technol. Xxviii 7972, 79721C-1–79721C-6 (2011).
Naulleau, P. P., Trikeriotis, M., Wood, I. i.,O. R., Krysak, M., Chung, Y. S., Ouyang, C., Cardineau, B., Brainard, R., Ober, C. K., Giannelis, E. P. & Cho, K. A new inorganic EUV resist with high-etch resistance. Proc. SPIE 8322, 83220U-1–83220U-6 (2012).
Trikeriotis, M., Krysak, M., Chung, Y. S., Ouyang, C., Cardineau, B., Brainard, R., Ober, C. K., Giannelis, E. P. & Cho, K. Nanoparticle photoresists from HfO2 and ZrO2 for EUV Patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).
Jiang, J., Chakrabarty, S., Yu, M. F. & Ober, C. K. Metal oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).
Wood, O. R., Panning, E. M., Chakrabarty, S., Sarma, C., Li, L., Giannelis, E. P. & Ober, C. K. Increasing sensitivity of oxide nanoparticle photoresists. Proc. SPIE 9048, 90481C(2014).
Acknowledgements
We are grateful for the support by JSR Inc. for ongoing support of this work on photolithography and for the interaction with many JSR scientists, but in particular those who have spent time at the Cornell University including Atsushi Shiota, Katsuki Doki, Kazuki Kasahara and most recently Kazunori Sakai.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Xu, H., Kosma, V., Giannelis, E. et al. In pursuit of Moore’s Law: polymer chemistry in action. Polym J 50, 45–55 (2018). https://doi.org/10.1038/pj.2017.64
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2017.64
This article is cited by
-
Ultrahigh-printing-speed photoresists for additive manufacturing
Nature Nanotechnology (2024)
-
Special issue: Polymer degradation for a sustainable future
Polymer Journal (2024)
-
Heterometallic Ti-Zr oxo nanocluster photoresists for advanced lithography
Science China Materials (2024)