Abstract
Hematopoietic stem cells (HSCs) are pluripotent cells that give rise to all of the circulating blood cell types. Their unique ability to self-renew while generating differentiated daughter cells permits HSCs to sustain blood cell production throughout life. In mammals, the pool of HSCs shifts from early sites in the aorta-gonad-mesonephros region and the placenta to the fetal liver and ultimately bone marrow. During the past decade, a map of transcriptional activators and repressors that regulate gene expression in HSCs, their precursors and their progeny, at distinct stages of development has been drafted. These factors control a program that first establishes the pool of HSCs in the fetus, and later guides decisions between quiescence, self-renewal, and lineage commitment with progressive differentiation to maintain homeostasis. Continuing studies of the regulatory mechanisms that control HSC gene expression followed by the identification of specific loci that are activated or silenced during the life of an HSC will help to further elucidate longstanding issues in HSC decisions to self-renew or to differentiate, and to define the origins of and connections between distinct HSC pools and their precursors.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- AGM:
-
aorta-gonad-mesonephros
- DNMT:
-
DNA methyltransferase
- EB:
-
embryoid body
- HDAC:
-
histone deacetylase
- HSC:
-
hematopoietic stem cell
- PcG:
-
polycomb group
- PRC:
-
polycomb group complex
- trxG:
-
trithorax group
References
Morrison SJ, Weissman IL 1994 The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1: 661–673
Arai F, Hirao A, Suda T 2005 Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 15: 75–79
Suda T, Arai F, Hirao A 2005 Hematopoietic stem cells and their niche. Trends Immunol 26: 426–433
Tavian M, Peault B 2005 The changing cellular environments of hematopoiesis in human development in utero. Exp Hematol 33: 1062–1069
Jaffredo T, Nottingham W, Liddiard K, Bollerot K, Pouget C, de Bruijn M 2005 From hemangioblast to hematopoietic stem cell: an endothelial connection?. Exp Hematol 33: 1029–1040
Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G 2004 Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432: 625–630
Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lievre F 2003 Mouse placenta is a major hematopoietic organ. Development 130: 5437–5444
Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK 2005 The placenta is a niche for hematopoietic stem cells. Dev Cell 8: 365–375
Ottersbach K, Dzierzak E 2005 The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8: 377–387
Nerlov C, Querfurth E, Kulessa H, Graf T 2000 GATA-1 interacts with the myeloid PU. 1 transcription factor and represses PU. 1-dependent transcription. Blood 95: 2543–2551
Orkin SH, Porcher C, Fujiwara Y, Visvader J, Wang LC 1999 Intersections between blood cell development and leukemia genes. Cancer Res 59: 1784s–1787s; discussion 1788s
Mikkola HK, Orkin SH 2005 Gene targeting and transgenic strategies for the analysis of hematopoietic development in the mouse. Methods Mol Med 105: 3–22
Shivdasani RA, Mayer EL, Orkin SH 1995 Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432–434
Robertson SM, Kennedy M, Shannon JM, Keller G 2000 A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127: 2447–2459
Mikkola HK, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y, Orkin SH 2003 Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421: 547–551
Hall MA, Curtis DJ, Metcalf D, Elefanty AG, Sourris K, Robb L, Gothert JR, Jane SM, Begley CG 2003 The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci U S A 100: 992–997
Schlaeger TM, Mikkola HK, Gekas C, Helgadottir HB, Orkin SH 2005 Tie2Cre-mediated gene ablation defines the stem-cell leukemia gene (SCL/tal1)-dependent window during hematopoietic stem-cell development. Blood 105: 3871–3874
Hall MA, Slater NJ, Begley CG, Salmon JM, Van Stekelenburg LJ, McCormack MP, Jane SM, Curtis DJ 2005 Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol 25: 6355–6362
Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR 1996 AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330
North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA 1999 Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126: 2563–2575
North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MF 2004 Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22: 158–168
North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA 2002 Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16: 661–672
Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M, Hirai H 2004 AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304
Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR, Speck NA, Gilliland DG 2005 Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494–504
Li Z, Chen MJ, Stacy T, Speck NA 2005 Runx1 function in hematopoiesis is required in cells that express Tek. Blood 107: 106–110
Yoder MC, Hiatt K, Mukherjee P 1997 In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci U S A 94: 6776–6780
Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I 2001 Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multi-lineage reconstitution. Immunity 15: 477–485
Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ 2004 An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 14: 2063–2069
Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ 2004 Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 6: 437–443
Kyba M, Perlingeiro RC, Daley GQ 2002 HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37
Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ 2005 Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci U S A 102: 19081–19086
Antonchuk J, Sauvageau G, Humphries RK 2002 HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109: 39–45
Antonchuk J, Sauvageau G, Humphries RK 2001 HOXB4 over-expression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 29: 1125–1134
Thorsteinsdottir U, Sauvageau G, Humphries RK 1999 Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 94: 2605–2612
Brun AC, Bjornsson JM, Magnusson M, Larsson N, Leveen P, Ehinger M, Nilsson E, Karlsson S 2004 Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 103: 4126–4133
Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ, Sauvageau G 2005 Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood Dec 8, [Epub ahead of print]
Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G, Humphries RK, Largman C 2005 Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 106: 3988–3994
Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, Largman C 1997 Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89: 1922–1930
Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, Humphries K, Sauvageau G 2002 Over-expression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99: 121–129
Lessard J, Faubert A, Sauvageau G 2004 Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23: 7199–7209
Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A 2004 c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18: 2747–2763
Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, Arinobu Y, Geary K, Zhang P, Dayaram T, Fenyus ML, Elf S, Chan S, Kastner P, Huettner CS, Murray R, Tenen DG, Akashi K 2005 Distinctive and indispensable roles of PU. 1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106: 1590–1600
Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, Fujiwara Y, Orkin SH 2004 Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18: 2336–2341
Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M, Gilliland DG 1996 The TEL gene and human leukemia. Biochim Biophys Acta 1288: M7–M10
Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F, Alt FW, Gilliland DG, Golub TR, Orkin SH 1998 The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12: 2392–2402
Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH 1997 Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J 16: 4374–4383
Lessard J, Sauvageau G 2003 Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260
Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM 1991 Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65: 753–763
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF 2003 Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305
Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Ema H, Kamijo T, Katoh-Fukui Y, Koseki H, van Lohuizen M, Nakauchi H 2004 Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21: 843–851
Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL 2005 Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102: 9194–9199
Kamminga LM, van Os R, Ausema A, Noach EJ, Weersing E, Dontje B, Vellenga E, de Haan G 2005 Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23: 82–92
Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G 2005 The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood Nov 17, [Epub ahead of print]
Gilks CB, Bear SE, Grimes HL, Tsichlis PN 1993 Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (GFI-1) encoding a novel zinc finger protein. Mol Cell Biol 13: 1759–1768
Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S, Orkin SH 2003 Intrinsic requirement for zinc finger transcription factor GFI-1 in neutrophil differentiation. Immunity 18: 109–120
Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y, Orkin SH 2004 GFI-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431: 1002–1007
Vire, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F 2005 The Polycomb group protein EZH2 directly controls DNA methylation. Nature Dec 14, [Epub ahead of print]
Suzuki M, Yamada T, Kihara Negishi F, Sakurai T, Hara E, Tenen DG, Hozumi N, Oikawa T 2005 Site-specific DNA methylation by a complex of PU. 1 and Dnmt3a/b. Oncogene Dec 5, [Epub ahead of print]
Kihara-Negishi F, Yamamoto H, Suzuki M, Yamada T, Sakurai T, Tamura T, Oikawa T 2001 In vivo complex formation of PU. 1 with HDAC1 associated with PU. 1-mediated transcriptional repression. Oncogene 20: 6039–6047
Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C, Gutierrez A, Danovi D, Bernard D, Boon T, Pelicci PG, Amati B, Kouzarides T, de Launoit Y, Di Croce L, Fuks F 2005 Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 24: 336–346
Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, Hoffman R 2004 Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood 103: 4102–4110
De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F, Fiorini R, Gelmetti V, Pascale S, Padula F, Petrucci MT, Arcese W, Nervi C 2005 Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65: 1505–1513
Bug G, Gul H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, Beissert T, Boehrer S, Hoelzer D, Ottmann OG, Ruthardt M 2005 Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65: 2537–2541
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by: NIH grants GM073981, CA90571, CA107300; the Margaret E. Early Medical Research Trust; and CMISE, a NASA URETI Institute (NCC 2-1364) (M.A.T.). M.A.T. is a Scholar of the Leukemia and Lymphoma Society. Also supported by NIH grant DK069659 and a Harvard Stem Cell Institute seed grant [H.K.A.M.].
Rights and permissions
About this article
Cite this article
Teitell, M., Mikkola, H. Transcriptional Activators, Repressors, and Epigenetic Modifiers Controlling Hematopoietic Stem Cell Development. Pediatr Res 59 (Suppl 4), 33–39 (2006). https://doi.org/10.1203/01.pdr.0000205155.26315.c7
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1203/01.pdr.0000205155.26315.c7
This article is cited by
-
Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators
Nature Communications (2014)