Abstract
Autoimmune diseases affect a significant segment of the population and are typically thought to be multifactorial in etiology. Autoimmune diseases due to single gene defects are rare, but offer an invaluable window into understanding how defects in the immune system can lead to autoimmunity. In this review, we will focus on autoimmune polyendocrinopathy syndrome type 1 and recent advances in our understanding of this disease. We will also discuss two other monogenic autoimmune diseases: immunodysregulation, polyendocrinopathy, and enteropathy, X-linked and Autoimmune lymphoproliferative syndrome. Importantly, the knowledge and principles gained from studying these diseases have been applicable to more common autoimmune diseases and have opened the door to better diagnostic and therapeutic modalities.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- APS:
-
autoimmune polyendocrinopathy syndrome
- IPEX:
-
immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
- ALPS:
-
autoimmune lymphoproliferative syndrome
- Aire:
-
autoimmune regulator
- mTECs:
-
medullary thymic epithelial cells
References
Jacobson DL, Gange SJ, Rose NR, Graham NM 1997 Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84: 223–243
Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH, Vella A, Nutland S, Stevens HE, Schuilenburg H, Coleman G, Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ovington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson JM, Guja C, Ionescu-Tirgoviste C, Simmonds MJ, Heward JM, Gough SC, Dunger DB, Wicker LS, Clayton DG 2007 Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39: 857–864
Zlotogora J, Shapiro MS 1992 Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet 29: 824–826
Perheentupa J 2006 Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 91: 2843–2850
Rosatelli MC, Meloni A, Meloni A, Devoto M, Cao A, Scott HS, Peterson P, Heino M, Krohn KJ, Nagamine K, Kudoh J, Shimizu N, Antonarakis SE 1998 A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum Genet 103: 428–434
Wolff AS, Erichsen MM, Meager A, Magitta NF, Myhre AG, Bollerslev J, Fougner KJ, Lima K, Knappskog PM, Husebye ES 2007 Autoimmune polyendocrine syndrome type 1 (APS I) in Norway—phenotypic variation, autoantibodies and novel mutations in the autoimmune regulator (AIRE) gene. J Clin Endocrinol Metab 92: 595–603
Williams RH, Larsen PR 2003 Williams Textbook of Endocrinology. Philadelphia, PA: Saunders
Perheentupa J 2002 APS-I/APECED: the clinical disease and therapy. Endocrinol Metab Clin North Am 31: 295–320, vi.
Peterson P, Peltonen L 2005 Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 25: 49–55
Ahonen P, Myllarniemi S, Sipila I, Perheentupa J 1990 Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322: 1829–1836
Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N 1997 Positional cloning of the APECED gene. Nat Genet 17: 393–398
The Finnish-German APECED Consortium 1997 An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17: 399–403
Pearce SH, Cheetham T, Imrie H, Vaidya B, Barnes ND, Bilous RW, Carr D, Meeran K, Shaw NJ, Smith CS, Toft AD, Williams G, Kendall-Taylor P 1998 A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am J Hum Genet 63: 1675–1684
Heino M, Scott HS, Chen Q, Peterson P, Maebpaa U, Papasavvas MP, Mittaz L, Barras C, Rossier C, Chrousos GP, Stratakis CA, Nagamine K, Kudoh J, Shimizu N, Maclaren N, Antonarakis SE, Krohn K 1999 Mutation analyses of North American APS-1 patients. Hum Mutat 13: 69–74
Cervato S, Mariniello B, Lazzarotto F, Morlin L, Zanchetta R, Radetti G, De Luca F, Valenzise M, Giordano R, Rizzo D, Giordano C, Betterle C 2008 Evaluation of the AIRE gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin Endocrinol (Oxf) 70: 420–428
Cetani F, Barbesino G, Borsari S, Pardi E, Cianferotti L, Pinchera A, Marcocci C 2001 A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab 86: 4747–4752
Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, Devoss JJ, Johannes KP, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS 2008 Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest 118: 1712–1726
Boe Wolff AS, Oftedal B, Johansson S, Bruland O, Lovas K, Meager A, Pedersen C, Husebye ES, Knappskog PM 2008 AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes Immun 9: 130–136
Turunen JA, Wessman M, Forsblom C, Kilpikari R, Parkkonen M, Pontynen N, Ilmarinen T, Ulmanen I, Peltonen L, Groop PH 2006 Association analysis of the AIRE and insulin genes in Finnish type 1 diabetic patients. Immunogenetics 58: 331–338
Jin Y, Bennett DC, Amadi-Myers A, Holland P, Riccardi SL, Gowan K, Fain PR, Spritz RA 2007 Vitiligo-associated multiple autoimmune disease is not associated with genetic variation in AIRE. Pigment Cell Res 20: 402–404
Meyer G, Donner H, Herwig J, Bohles H, Usadel KH, Badenhoop K 2001 Screening for an AIRE-1 mutation in patients with Addison's disease, type 1 diabetes, Graves' disease and Hashimoto's thyroiditis as well as in APECED syndrome. Clin Endocrinol (Oxf) 54: 335–338
Ferrera F, Rizzi M, Sprecacenere B, Balestra P, Sessarego M, Di Carlo A, Filaci G, Gabrielli A, Ravazzolo R, Indiveri F 2007 AIRE gene polymorphisms in systemic sclerosis associated with autoimmune thyroiditis. Clin Immunol 122: 13–17
Tazi-Ahnini R, Cork MJ, Gawkrodger DJ, Birch MP, Wengraf D, McDonagh AJ, Messenger AG 2002 Role of the autoimmune regulator (AIRE) gene in alopecia areata: strong association of a potentially functional AIRE polymorphism with alopecia universalis. Tissue Antigens 60: 489–495
Tazi-Ahnini R, McDonagh AJ, Wengraf DA, Lovewell TR, Vasilopoulos Y, Messenger AG, Cork MJ, Gawkrodger DJ 2008 The autoimmune regulator gene (AIRE) is strongly associated with vitiligo. Br J Dermatol 159: 591–596
Bjorses P, Pelto-Huikko M, Kaukonen J, Aaltonen J, Peltonen L, Ulmanen I 1999 Localization of the APECED protein in distinct nuclear structures. Hum Mol Genet 8: 259–266
Smith KM, Olson DC, Hirose R, Hanahan D 1997 Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int Immunol 9: 1355–1365
Derbinski J, Schulte A, Kyewski B, Klein L 2001 Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2: 1032–1039
Gotter J, Brors B, Hergenhahn M, Kyewski B 2004 Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199: 155–166
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D 2002 Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 1395–1401
Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D 2005 The cellular mechanism of Aire control of T cell tolerance. Immunity 23: 227–239
Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC 2003 Aire regulates negative selection of organ-specific T cells. Nat Immunol 4: 350–354
Su MA, Anderson MS 2004 Aire: an update. Curr Opin Immunol 16: 746–752
Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, Johannes KP, Su MA, Chang HY, Krummel MF, Anderson MS 2008 Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321: 843–847
Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK, Turley SJ 2007 Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8: 181–190
Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, Patel DJ 2006 Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442: 91–95
Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG 2006 Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442: 100–103
Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, Liiv I, Maran U, Mollica L, Bottomley MJ, Musco G, Peterson P 2008 The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 9: 370–376
Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, Bua D, Carney D, Shoelson SE, Gozani O, Kingston RE, Benoist C, Mathis D 2008 Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci USA 105: 15878–15883
Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM 2007 AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 27: 8815–8823
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P 2008 DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim Biophys Acta 1783: 74–83
Pitkanen J, Rebane A, Rowell J, Murumagi A, Strobel P, Moll K, Saare M, Heikkila J, Doucas V, Marx A, Peterson P 2005 Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem Biophys Res Commun 333: 944–953
Pitkanen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vahamurto P, Ollila J, Vihinen M, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Krohn K, Peterson P 2000 The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem 275: 16802–16809
Alimohammadi M, Bjorklund P, Hallgren A, Pontynen N, Szinnai G, Shikama N, Keller MP, Ekwall O, Kinkel SA, Husebye ES, Gustafsson J, Rorsman F, Peltonen L, Betterle C, Perheentupa J, Akerstrom G, Westin G, Scott HS, Hollander GA, Kampe O 2008 Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med 358: 1018–1028
Devoss J, Hou Y, Johannes K, Lu W, Liou GI, Rinn J, Chang H, Caspi R, Fong L, Anderson MS 2006 Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J Exp Med 203: 2727–2735
Gavanescu I, Kessler B, Ploegh H, Benoist C, Mathis D 2007 Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc Natl Acad Sci USA 104: 4583–4587
Kuroda N, Mitani T, Takeda N, Ishimaru N, Arakaki R, Hayashi Y, Bando Y, Izumi K, Takahashi T, Nomura T, Sakaguchi S, Ueno T, Takahama Y, Uchida D, Sun S, Kajiura F, Mouri Y, Han H, Matsushima A, Yamada G, Matsumoto M 2005 Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 174: 1862–1870
Meager A, Visvalingam K, Peterson P, Moll K, Murumagi A, Krohn K, Eskelin P, Perheentupa J, Husebye E, Kadota Y, Willcox N 2006 Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 3: e289
Zhang L, Barker JM, Babu S, Su M, Stenerson M, Cheng M, Shum A, Zamir E, Badolato R, Law A, Eisenbarth GS, Anderson MS 2007 A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1. Clin Immunol 125: 131–137
Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A, Perniola R, Pura M, Boe Wolff AS, Husebye ES, Lilic D, Ryan KR, Gennery AR, Cant AJ, Abinun M, Spickett GP, Arkwright PD, Denning D, Costigan C, Dominguez M, McConnell V, Willcox N, Meager A 2008 Autoantibodies against type I Interferons as an additional diagnostic criteria for Autoimmune Polyendocrine Syndrome Type I. J Clin Endocrinol Metab 93: 4389–4397
Pestka S, Krause CD, Walter MR 2004 Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202: 8–32
Levin M 2006 Anti-interferon auto-antibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med 3: e292
Kisand K, Link M, Wolff AS, Meager A, Tserel L, Org T, Murumagi A, Uibo R, Willcox N, Trebusak Podkrajsek K, Battelino T, Lobell A, Kampe O, Lima K, Meloni A, Ergun-Longmire B, Maclaren NK, Perheentupa J, Krohn KJ, Scott HS, Husebye ES, Peterson P 2008 Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood 112: 2657–2666
Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD 1997 The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15: 293–297
Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C 1997 Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15: 289–292
Thebault-Baumont K, Dubois-Laforgue D, Krief P, Briand JP, Halbout P, Vallon-Geoffroy K, Morin J, Laloux V, Lehuen A, Carel JC, Jami J, Muller S, Boitard C 2003 Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest 111: 851–857
Kyewski B, Klein L 2006 A central role for central tolerance. Annu Rev Immunol 24: 571–606
Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, Pagani F, Baralle FE, Eymard B, Tranchant C, Gajdos P, Vincent A, Willcox N, Beeson D, Kyewski B, Garchon HJ 2007 An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448: 934–937
Satake N, Nakanishi M, Okano M, Tomizawa K, Ishizaka A, Kojima K, Onodera M, Ariga T, Satake A, Sakiyama Y, Ishikawa N, Matsumoto S 1993 A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152: 313–315
Baud O, Goulet O, Canioni D, Le Deist F, Radford I, Rieu D, Dupuis-Girod S, Cerf-Bensussan N, Cavazzana-Calvo M, Brousse N, Fischer A, Casanova JL 2001 Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 344: 1758–1762
Powell BR, Buist NR, Stenzel P 1982 An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100: 731–737
Levy-Lahad E, Wildin RS 2001 Neonatal diabetes mellitus, enteropathy, thrombocytopenia, and endocrinopathy: further evidence for an X-linked lethal syndrome. J Pediatr 138: 577–580
Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME 2001 X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27: 18–20
Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD 2001 The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20–21
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F 2001 Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73
Hori S, Takahashi T, Sakaguchi S 2003 Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81: 331–371
Fontenot JD, Gavin MA, Rudensky AY 2003 Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336
Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J, Sparwasser T 2007 Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204: 57–63
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S 2008 CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–275
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR Jr, Muller W, Rudensky AY 2008 Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546–558
Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N 2002 Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109: 131–140
Putnam AL, Vendrame F, Dotta F, Gottlieb PA 2005 CD4+CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun 24: 55–62
Brusko T, Wasserfall C, McGrail K, Schatz R, Viener HL, Schatz D, Haller M, Rockell J, Gottlieb P, Clare-Salzler M, Atkinson M 2007 No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56: 604–612
Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI 2005 Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54: 92–99
Roifman CM 2000 Human IL-2 receptor alpha chain deficiency. Pediatr Res 48: 6–11
Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW 2007 CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119: 482–487
Su HC 2008 The technological transformation of patient-driven human immunology research. Immunol Res, in press
Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, Strober W 1992 A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest 90: 334–341
Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM 1995 Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946
Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP 1995 Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347–1349
Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD 1996 Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98: 1107–1113
Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ 1999 Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98: 47–58
Rieux-Laucat F, Le Deist F, Fischer A 2003 Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ 10: 124–133
Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ 2002 Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419: 395–399
Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA 2004 In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199: 1455–1465
Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM 2004 CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199: 1467–1477
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Su, M., Anderson, M. Monogenic Autoimmune Diseases: Insights into Self-Tolerance. Pediatr Res 65, 20–25 (2009). https://doi.org/10.1203/PDR.0b013e31819dc55c
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1203/PDR.0b013e31819dc55c