Abstract
Disruptions of genes that are involved in epigenetic functions are known to be causative for several mental retardation/intellectual disability (MR/ID) syndromes. Recent work has highlighted genes with epigenetic functions as being implicated in autism spectrum disorders (ASDs) and schizophrenia (SCZ). The gene-environment interaction is an important factor of pathogenicity for these complex disorders. Epigenetic modifications offer a mechanism by which we can explain how the environment interacts with, and is able to dynamically regulate, the genome. This review aims to provide an overview of the role of epigenetic deregulation in the etiopathology for neurodevelopment disease.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- ASDs:
-
autism spectrum disorders
- CNV:
-
copy number variant
- MR/ID:
-
mental retardation/intellectual disability
- SCZ:
-
schizophrenia
REFERENCES
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. 2001 Initial sequencing and analysis of the human genome. Nature 409: 860–921
Kramer JM, van Bokhoven H 2009 Genetic and epigenetic defects in mental retardation. Int J Biochem Cell Biol 41: 96–107
Ropers HH 2010 Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11: 161–187
Urdinguio RG, Sanchez-Mut JV, Esteller M 2009 Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8: 1056–1072
Gräff J, Mansuy IM 2009 Epigenetic dysregulation in cognitive disorders. Eur J Neurosci 30: 1–8
Illingworth RS, Bird AP 2009 CpG islands—'a rough guide'. FEBS Lett 583: 1713–1720
Bird A 2002 DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21
Laird PW 2010 Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11: 191–203
Suzuki MM, Bird A 2008 DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–476
Kouzarides T 2007 Chromatin modifications and their function. Cell 128: 693–705
Yoo AS, Crabtree GR 2009 ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19: 120–126
Vaissière T, Sawan C, Herceg Z 2008 Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659: 40–48
Riccio A 2010 Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci 13: 1330–1337
Gavin DP, Sharma RP 2010 Histone modifications, DNA methylation, and schizophrenia. Neurosci Biobehav Rev 34: 882–888
MacDonald JL, Roskams AJ 2009 Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88: 170–183
Leonard H, Wen X 2002 The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev 8: 117–134
Inlow JK, Restifo LL 2004 Molecular and comparative genetics of mental retardation. Genetics 166: 835–881
Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T 2006 Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14: 701–713
Pickering DL, Eudy JD, Olney AH, Dave BJ, Golden D, Stevens J, Sanger WG 2008 Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet Med 10: 262–266
Manolakos E, Vetro A, Kefalas K, Rapti SM, Louizou E, Garas A, Kitsos G, Vasileiadis L, Tsoplou P, Eleftheriades M, Peitsidis P, Orru S, Liehr T, Petersen MB, Thomaidis L 2010 The use of array-CGH in a cohort of Greek children with developmental delay. Mol Cytogenet 3: 22
Friedman J, Adam S, Arbour L, Armstrong L, Baross A, Birch P, Boerkoel C, Chan S, Chai D, Delaney AD, Flibotte S, Gibson WT, Langlois S, Lemyre E, Li HI, MacLeod P, Mathers J, Michaud JL, McGillivray BC, Patel MS, Qian H, Rouleau GA, Van Allen MI, Yong SL, Zahir FR, Eydoux P, Marra MA 2009 Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization. BMC Genomics 10: 526
Esteller M 2007 Rett syndrome: the first forty years: 1966–2006. Epigenetics 2: 1
Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY 2000 Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47: 670–679
Gonzales ML, LaSalle JM 2010 The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 12: 127–134
Taine L, Goizet C, Wen ZQ, Petrij F, Breuning MH, Ayme S, Saura R, Arveiler B, Lacombe D 1998 Submicroscopic deletion of chromosome 16p13.3 in patients with Rubinstein-Taybi syndrome. Am J Med Genet 78: 267–270
Kalkhoven E, Roelfsema JH, Teunissen H, den Boer A, Ariyurek Y, Zantema A, Breuning MH, Hennekam RC, Peters DJ 2003 Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12: 441–450
Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel JL, Sassone-Corsi P, Hanauer A 1996 Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384: 567–570
Nakajima T, Fukamizu A, Takahashi J, Gage FH, Fisher T, Blenis J, Montminy MR 1996 The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86: 465–474
Ehrlich M 2003 The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109: 17–28
Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang W 2003 The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100: 10635–10640
Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, van Kessel AG 2004 Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36: 955–957
Biliya S, Bulla LA Jr 2010 Genomic imprinting: the influence of differential methylation in the two sexes. Exp Biol Med (Maywood) 235: 139–147
Knoll JH, Nicholls RD, Magenis RE, Graham JM Jr Lalande M, Latt SA 1989 Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet 32: 285–290
Buiting K 2010 Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 154C: 365–376
Bolton PF, Dennis NR, Browne CE, Thomas NS, Veltman MW, Thompson RJ, Jacobs P 2001 The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 105: 675–685
Dimitropoulos A, Schultz RT 2007 Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep 9: 159–164
Piard J, Philippe C, Marvier M, Beneteau C, Roth V, Valduga M, Beri M, Bonnet C, Gregoire MJ, Jonveaux P, Leheup B 2010 Clinical and molecular characterization of a large family with an interstitial 15q11q13 duplication. Am J Med Genet A 152A: 1933–1941
Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA, Probst FJ, Craigen WJ, Graham BH, Pursley A, Clark G, Lee J, Proud M, Stocco A, Rodriguez DL, Kozel BA, Sparagana S, Roeder ER, McGrew SG, Kurczynski TW, Allison LJ, Amato S, Savage S, Patel A, Stankiewicz P, Beaudet AL, Cheung SW, Lupski JR 2010 Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 47: 332–341
Phelan MC 2008 Deletion 22q13.3 syndrome. Orphanet J Rare Dis 3: 14
Psoni S, Sofocleous C, Traeger-Synodinos J, Kitsiou-Tzeli S, Kanavakis E, Fryssira-Kanioura H 2010 Phenotypic and genotypic variability in four males with MECP2 gene sequence aberrations including a novel deletion. Pediatr Res 67: 551–556
Perrin M, Kleinhaus K, Messinger J, Malaspina D 2010 Critical periods and the developmental origins of disease: an epigenetic perspective of schizophrenia. Ann N Y Acad Sci 1204: E8–E13
Brown AS 2011 The environment and susceptibility to schizophrenia. Prog Neurobiol 93: 23–58
Kim T, Park JK, Kim HJ, Chung JH, Kim JW 2010 Association of histone deacetylase genes with schizophrenia in Korean population. Psychiatry Res 178: 266–269
Sharma RP, Grayson DR, Gavin DP 2008 Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98: 111–117
Benes FM, Lim B, Matzilevich D, Subburaju S, Walsh JP 2008 Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc Natl Acad Sci U S A 105: 20935–20940
Knight CG, Zitzmann N, Prabhakar S, Antrobus R, Dwek R, Hebestreit H, Rainey PB 2006 Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network. Nat Genet 38: 1015–1022
Moretti P, Zoghbi HY 2006 MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16: 276–281
Chahrour M, Zoghbi HY 2007 The story of Rett syndrome: from clinic to neurobiology. Neuron 56: 422–437
Martin CL, Duvall JA, Ilkin Y, Simon JS, Arreaza MG, Wilkes K, Alvarez-Retuerto A, Whichello A, Powell CM, Rao K, Cook E, Geschwind DH 2007 Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am J Med Genet B Neuropsychiatr Genet 144B: 869–876
Bhalla K, Phillips HA, Crawford J, McKenzie OL, Mulley JC, Eyre H, Gardner AE, Kremmidiotis G, Callen DF 2004 The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J Hum Genet 49: 308–311
Verbruggen KT, Knijff WA, Soorani-Lunsing RJ, Sijens PE, Verhoeven NM, Salomons GS, Goorhuis-Brouwer SM, van Spronsen FJ 2007 Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation. Eur J Pediatr 166: 921–925
Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J, Gennarelli M 2003 Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psychiatry 53: 617–619
Rice SR, Niu N, Berman DB, Heston LL, Sobell JL 2001 Identification of single nucleotide polymorphisms (SNPs) and other sequence changes and estimation of nucleotide diversity in coding and flanking regions of the NMDAR1 receptor gene in schizophrenic patients. Mol Psychiatry 6: 274–284
Zhao X, Li H, Shi Y, Tang R, Chen W, Liu J, Feng G, Shi J, Yan L, Liu H, He L 2006 Significant association between the genetic variations in the 5′ end of the N-methyl-D-aspartate receptor subunit gene GRIN1 and schizophrenia. Biol Psychiatry 59: 747–753
Rottach A, Leonhardt H, Spada F 2009 DNA methylation-mediated epigenetic control. J Cell Biochem 108: 43–51
Portela A, Esteller M 2010 Epigenetic modifications and human disease. Nat Biotechnol 28: 1057–1068
Easwaran HP, Schermelleh L, Leonhardt H, Cardoso MC 2004 Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep 5: 1181–1186
Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R 2002 Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 22: 2124–2135
Li E, Bestor TH, Jaenisch R 1992 Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926
Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B 2002 DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552–556
Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, Vives L, Walsh T, McCarthy SE, Baker C, Mefford HC, Kidd JM, Browning SR, Browning BL, Dickel DE, Levy DL, Ballif BC, Platky K, Farber DM, Gowans GC, Wetherbee JJ, Asamoah A, Weaver DD, Mark PR, Dickerson J, Garg BP, Ellingwood SA, Smith R, Banks VC, Smith W, McDonald MT, Hoo JJ, French BN, Hudson C, Johnson JP, Ozmore JR, Moeschler JB, Surti U, Escobar LF, El-Khechen D, Gorski JL, Kussmann J, Salbert B, Lacassie Y, Biser A, McDonald-McGinn DM, Zackai EH, Deardorff MA, Shaikh TH, Haan E, Friend KL, Fichera M, Romano C, Gécz J, DeLisi LE, Sebat J, King MC, Shaffer LG, Eichler EE 2010 A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 42: 203–209
Lee C, Scherer SW 2010 The clinical context of copy number variation in the human genome. Expert Rev Mol Med 12: e8
Coupry I, Monnet L, Attia AA, Taine L, Lacombe D, Arveiler B 2004 Analysis of CBP (CREBBP) gene deletions in Rubinstein-Taybi syndrome patients using real-time quantitative PCR. Hum Mutat 23: 278–284
Stef M, Simon D, Mardirossian B, Delrue MA, Burgelin I, Hubert C, Marche M, Bonnet F, Gorry P, Longy M, Lacombe D, Coupry I, Arveiler B 2007 Spectrum of CREBBP gene dosage anomalies in Rubinstein-Taybi syndrome patients. Eur J Hum Genet 15: 843–847
Thienpont B, Béna F, Breckpot J, Philip N, Menten B, Van Esch H, Scalais E, Salamone JM, Fong CT, Kussmann JL, Grange DK, Gorski JL, Zahir F, Yong SL, Morris MM, Gimelli S, Fryns JP, Mortier G, Friedman JM, Villard L, Bottani A, Vermeesch JR, Cheung SW, Devriendt K 2010 Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J Med Genet 47: 155–161
Marangi G, Leuzzi V, Orteschi D, Grimaldi ME, Lecce R, Neri G, Zollino M 2008 Duplication of the Rubinstein-Taybi region on 16p13.3 is associated with a distinctive phenotype. Am J Med Genet A 146A: 2313–2317
Bannister AJ, Kouzarides T 1996 The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643
Burmeister M, McInnis MG, Zollner S 2008 Psychiatric genetics: progress amid controversy. Nat Rev Genet 9: 527–540
Inoue K, Lupski JR 2003 Genetics and genomics of behavioral and psychiatric disorders. Curr Opin Genet Dev 13: 303–309
Singh SM, Basu D 2009 The P300 event-related potential and its possible role as an endophenotype for studying substance use disorders: a review. Addict Biol 14: 298–309
Sacco R, Militerni R, Frolli A, Bravaccio C, Gritti A, Elia M, Curatolo P, Manzi B, Trillo S, Lenti C, Saccani M, Schneider C, Melmed R, Reichelt KL, Pascucci T, Puglisi-Allegra S, Persico AM 2007 Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry 62: 1038–1047
Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N 2002 Effects of age on brain volume and head circumference in autism. Neurology 59: 175–183
Fidler DJ, Bailey JN, Smalley SL 2000 Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol 42: 737–740
Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J 2005 Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 62: 1366–1376
Gur RE, Gur RC 2010 Functional magnetic resonance imaging in schizophrenia. Dialogues Clin Neurosci 12: 333–343
Hamer D 2002 Genetics. Rethinking behavior genetics. Science 298: 71–72
Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y 2005 Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. J Neuropathol Exp Neurol 64: 537–544
Feng J, Chang H, Li E, Fan G 2005 Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79: 734–746
Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E 2006 Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development 133: 1183–1192
Matarazzo V, Cohen D, Palmer AM, Simpson PJ, Khokhar B, Pan SJ, Ronnett GV 2004 The transcriptional repressor Mecp2 regulates terminal neuronal differentiation. Mol Cell Neurosci 27: 44–58
Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A 2001 Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15: 710–723
Endres M, Fan G, Meisel A, Dirnagl U, Jaenisch R 2001 Effects of cerebral ischemia in mice lacking DNA methyltransferase 1 in post-mitotic neurons. Neuroreport 12: 3763–3766
Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC 2008 Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 83: 511–519
Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, Chen D, Jin P, Zhao X 2008 The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet 17: 2047–2057
Muhle R, Trentacoste SV, Rapin I 2004 The genetics of autism. Pediatrics 113: e472–e486
Schneider A, Hagerman RJ, Hessl D 2009 Fragile X syndrome—from genes to cognition. Dev Disabil Res Rev 15: 333–342
Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss T, Wurst W, Minucci S, Gottlicher M 2007 Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 67: 9047–9054
Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, Akbarian S 2007 Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27: 11254–11262
Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E 2007 Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res 91: 51–61
Costa E, Chen Y, Dong E, Grayson DR, Kundakovic M, Maloku E, Ruzicka W, Satta R, Veldic M, Zhubi A, Guidotti A 2009 GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Rev Neurother 9: 87–98
Van Winkel R, Esquivel G, Kenis G, Wichers M, Collip D, Peerbooms O, Rutten B, Myin-Germeys I, Van Os J 2010 REVIEW: Genome-wide findings in schizophrenia and the role of gene-environment interplay. CNS Neurosci Ther 16: e185–e192
Archer T, Kostrzewa RM, Beninger RJ, Palomo T 2010 Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotox Res 18: 287–305
van Os J, Kenis G, Rutten BP 2010 The environment and schizophrenia. Nature 468: 203–212
Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG 2006 Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44: 401–406
Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Naka M, Matsuoka H, Sato M, Sora I 2004 Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann N Y Acad Sci 1025: 102–109
Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A 2005 Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57: 500–509
Weaver IC, Meaney MJ, Szyf M 2006 Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A 103: 3480–3485
Oh G, Petronis A 2008 Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull 34: 1122–1129
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carter NP 2009 DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet 84: 524–533
McEwen BS 2010 Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann N Y Acad Sci 1204: E38–E59
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (www.pedresearch.org).
Rights and permissions
About this article
Cite this article
Zahir, F., Brown, C. Epigenetic Impacts on Neurodevelopment: Pathophysiological Mechanisms and Genetic Modes of Action. Pediatr Res 69, 92–100 (2011). https://doi.org/10.1203/PDR.0b013e318213565e
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1203/PDR.0b013e318213565e
This article is cited by
-
The Role of KDM2A and H3K36me2 Demethylation in Modulating MAPK Signaling During Neurodevelopment
Neuroscience Bulletin (2023)
-
Epigenetic Factors and Autism Spectrum Disorders
NeuroMolecular Medicine (2013)
-
The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory
Nature Neuroscience (2013)
-
A macroepigenetic approach to identify factors responsible for the autism epidemic in the United States
Clinical Epigenetics (2012)
-
Life before birth: are the dice tossed for the rest of our lives?
European Child & Adolescent Psychiatry (2012)