Abstract
The diphthamide biosynthesis 1 (DPH1) gene encodes one of the essential components of the enzyme catalyzing the first step of diphthamide formation on eukaryotic elongation factor 2 (EEF2). Diphthamide is the posttranslationally modified histidine residue on EEF2 that promotes protein chain elongation in the ribosome. DPH1 defects result in a failure of protein synthesis involving EEF2, leading to growth defects, embryonic lethality, and cell death. In humans, DPH1 mutations cause developmental delay with a short stature, dysmorphic features, and sparse hair, and are inherited in an autosomal recessive manner (MIM#616901). To date, only two homozygous missense mutations in DPH1 (c.17T>A, p.Met6Lys and c.701T>C, p.Leu234Pro) have been reported. We used WES to identify novel compound heterozygous mutations in DPH1 (c.289delG, p.Glu97Lysfs*8 and c.491T>C, p.Leu164Pro) in a patient from a nonconsanguineous family presenting with intellectual disability, a short stature, craniofacial abnormalities, and external genital abnormalities. The clinical phenotype of all patients with DPH1 mutations, including the current patient, revealed core features, although the external genital anomaly was newly recognized in our case.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH. Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol. 2004;24:9487–97.
Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res. 1996;56:1997–2002.
Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJ. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Mol Microbiol. 2014;94:1213–26.
Su X, Lin Z, Lin H. The biosynthesis and biological function of diphthamide. Crit Rev Biochem Mol Biol. 2013;48:515–21.
Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015;10:148–61.
Liu S, Bachran C, Gupta P, Miller-Randolph S, Wang H, Crown D, et al. Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc Natl Acad Sci USA. 2012;109:13817–22.
Loucks CM, Parboosingh JS, Shaheen R, Bernier FP, McLeod DR, Seidahmed MZ, et al. Matching two independent cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies. Hum Mutat. 2015;36:1015–9.
Fukai R, Saitsu H, Tsurusaki Y, Sakai Y, Haginoya K, Takahashi K, et al. De novo KCNH1 mutations in four patients with syndromic developmental delay, hypotonia and seizures. J Hum Genet. 2016;61:381–7.
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–74.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.
Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci. 2015;72:4523–44.
Acknowledgements
The authors thank the patient and his family for participating in this work. This study was supported by grants from: Research on Measures for Intractable Diseases; Comprehensive Research on Disability Health and Welfare, the Strategic Research Program for Brain Science; Initiative on Rare and Undiagnosed Diseases in Pediatrics and Initiative on Rare and Undiagnosed Diseases for Adults from the Japan Agency for Medical Research and Development; Grants-in-Aid for Scientific Research (A and B) from the Japan Society for the Promotion of Science; Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program in the Project for Developing Innovation Systems from the Japan Science and Technology Agency; grants from the Ministry of Health, Labour and Welfare; the Takeda Science Foundation; the Yokohama Foundation for Advancement of Medical Science; and the Hayashi Memorial Foundation for Female Natural Scientists. We thank Sarah Williams, PhD, from Edanz Group (www.edanzediting.com) for editing a draft of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Nakajima, J., Oana, S., Sakaguchi, T. et al. Novel compound heterozygous DPH1 mutations in a patient with the unique clinical features of airway obstruction and external genital abnormalities. J Hum Genet 63, 529–532 (2018). https://doi.org/10.1038/s10038-017-0399-2
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s10038-017-0399-2
This article is cited by
-
Diphthamide deficiency promotes association of eEF2 with p53 to induce p21 expression and neural crest defects
Nature Communications (2024)
-
Fertility protection during chemotherapy treatment by boosting the NAD(P)+ metabolome
EMBO Molecular Medicine (2024)
-
DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients
European Journal of Human Genetics (2020)