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Abstract
Intracranial vertebral–basilar artery dissection (IVAD) is an arterial disorder leading to life-threatening consequences. Genetic
factors are known to be causative to certain syndromic forms of IVAD. However, systematic study of the molecular basis of
sporadic and isolated IVAD is lacking. To identify genetic variants contributing to the etiology of IVAD, we enrolled a cohort of
44 unrelated cases with a clinical diagnosis of isolated IVAD and performed whole-exome sequencing (WES) for all the
participants; a trio exome sequencing approach was used when samples from both parents were available. Four previously
reported disease-causing heterozygous variants (three in COL3A1 and one in FBN1) and seven novel heterozygous variants in
IVAD-related genes were identified. In addition, six variants in novel IVAD genes including two de novo heterozygous
nonsynonymous variants (each in VPS52 and CDK18), two stop-gain variants (each inMYH9 and LYL1), and two heterozygous
biallelic variants in TNXB were considered to be possibly contributing to the phenotype, with unknown significance according to
the existing knowledge. A significantly higher mutational rate of IVAD candidate genes was observed in patients versus our in-
house controls (P= 0.002) (DISCO study, http://www.discostudy.org/, n= 2248). Our study provided a mutational landscape
for patients with isolated IVAD.

Introduction

Intracranial vertebral–basilar artery dissection (IVAD) is a
pathological condition of the artery caused by the diversion
of circulating blood into the weakened vessel wall, with
an incidence of 1–1.5 per 100,000 individuals every

year [1]. IVAD can lead to life-threatening consequences
if diagnoses are delayed, accompanied by symptoms
such as hemorrhage, mass effect, and stroke [1–3], with
a high mortality ranging from 19 to 83% [3].

While IVAD is usually nonsyndromic, it can be present
in congenital syndromes featuring connective tissue dis-
orders, such as vascular Ehlers–Danlos syndrome [4],
Marfan syndrome [5], and Loeys–Dietz syndrome [6].
Considering the occurrence of familial aggregation and
the high prevalence of histological abnormalities of con-
nective tissues in patients with sporadic arterial dissections,
genetic factors were assumed to also underlie nonsyndomic
vertebral artery dissection [5, 7]. Genome-wide association
studies (GWASs) have been utilized extensively to locate
genomic markers related to increased risk of IVAD. An
increased prevalence of the c.677C>T genotype of methy-
lenetetrahydrofolate reductase (MTHFR) was reported in
cervical artery dissection (CeAD) patients [8]. The E496K
protein change in intercellular adhesion molecule-1 (ICAM-
1) was enriched in patients with spontaneous CeAD [9],
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suggesting that proinflammatory factors might be involved
in the etiology of CeAD. Recently, a common allele
rs9349379[G] of PHACTR1 was found by GWAS to be
associated with a reduced risk of both vertebral and carotid
artery dissection [10].

The application of next-generation sequencing (NGS)
to identify pathogenic or risk variants in patient cohorts
with IVAD-associated diseases has also been reported
[11, 12]. Using a panel of 16 genes, a missense variant
c.953C>G in COL3A1 was identified in a CeAD pedigree
[11]. Exome sequencing of 15 CAD and 3 VAD patients
identified significantly higher rate of nonbenign variants
in FBN1, TGFBR2, COL3A1, and COL4A1 [12]. The
approaches of NGS have so far focused on genes related
to connective tissue disorders due to their known associa-
tion with artery dissection.

In order to decipher the molecular basis of IVAD at an
exome level, we herein performed a whole-exome sequen-
cing (WES) study interrogating a cohort of patients with
IVAD. In addition to identifying variants in known arterial
dissection-related genes, we also identified potentially
contributory variants in novel IVAD genes.

Methods

Cohort collection

We consecutively enrolled cases diagnosed with IVAD
from January 2016 to December 2016 at Beijing Tiantan
Hospital, China. Digital subtraction angiography,
computed tomographic angiography, magnetic resonance
imaging, and magnetic resonance angiography were
used for radiological assessment. The inclusion and
exclusion criteria and detailed phenotypic data are
provided in the Supplementary material. This study was
approved by the ethics committee of Beijing Tiantan
Hospital. Informed consent was obtained from each patient
or their parents.

Whole-exome sequencing

WES was performed on peripheral blood for all the parti-
cipants. In brief, DNA samples were prepared into Illumina
paired-end libraries and underwent whole-exome capture
with the SureSelect Human All Exon V6+UTR r2 core
design (91Mb, Agilent), followed by sequencing on the
Illumina HiSeq 4000 platform (Illumina, San Diego, CA,
USA). In-house-developed Peking Union Medical college
hospital Pipeline (PUMP) and variant interpretation meth-
ods are provided in the Supplementary Methods.

WES data interpretation

The detailed variant calling and annotation methods are
provided in the Supplementary Material. After filtering,
variants in 25 genes related with artery/aortic dissection
according to the Human Gene Mutation Database (HGMD)
and the Online Mendelian Inheritance in Man (OMIM)
(Table S1) were analyzed. Reported pathogenic variants in
IVAD candidate genes were classified as ‘disease-causing
variants’. Novel variants in IVAD genes are classified as
‘susceptibility variants’. Apart from variants in reported
genes, additional variants were selected based on their
pathogenicity and inheritance patterns (Fig. 1). Firstly,
truncating variants in genes predicted to be intolerant to
loss-of-function changes according to the Exome Aggre-
gation Consortium (ExAC) database (probability of loss-
of-function intolerance (pLI) score ≥0.9, or having no
truncating variants) were identified as susceptibility var-
iants. De novo and biallelic variants (compound hetero-
zygous and homozygous variants) identified by trio
analysis were also added to the category of susceptibility
variants.

In-house control database

In-house control database consisted of 2248 individuals
without apparent vascular deformity from Peking Union

Fig. 1 An overview of the
variant prioritization workflow.
MAF minor allele frequency,
pLI probability of loss-of-
function intolerance, novel
absent from public databases
(ExAC, 1000 genome,
ESP5400)
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Medical College Hospital as part of the Deciphering
Disorders Involving Scoliosis and COmorbidities (DISCO)
study (http://www.discostudy.org/). WES was performed on
peripheral blood using the same protocol.

Rare variant burden analyses

To alleviate confounding factors attributable to differential
sequencing coverage, we conducted harmonization
analyses between case and control exomes. An individual
RefSeq coding sequence site was excluded from the ana-
lysis if the absolute difference in percentages of cases
compared to controls with adequate coverage of the site
differed by greater than 8.2%. This site-based pruning
resulted in exclusion of 4.8% of the RefSeq coding
sequence sites.

After site-based pruning analyses, rare nonsynonymous
variants (missense, nonsense, frameshift, in-frame indel,
and canonical splicing site) were extracted to capture the
category of genetic variation that meets specific criteria
designed to enrich for pathogenic variants. To identify rare
variants, we use internal (combined case and control
population) and external (ExAC and gnomAD) sequence
data to filter for variants with a minor allele frequency
(MAF) < 0.01.

Rare variants were analyzed using SNP-set (Sequence)
Kernel Association Test-Optimized (SKAT-O) test to
determine the association of mutational burden in the 25
genes. To correct for multiple testing, Benjamini–Hochberg
method was applied.

Results

Cohort information

We enrolled a total of 8 cases with unaffected parents (trios)
and 36 singleton cases of Chinese Han ethnicity, consisting
of 35 males and 9 females, with a mean age of diagnosis
of 42.1 ± 17.7 years. Seven children (younger than 14 years)
accounted for 16% of all the patients. Clinical classification
was performed according to Zhang et al. [13]. Detailed
demographic information is presented in Table 1.

Whole-exome sequencing identified 17 candidate
variants

The detailed WES quality parameter is shown in Supple-
mentary Materials (Table S2). After manual review and
prioritization, we identified 17 variants possibly contribut-
ing to the IVAD phenotype of 15 patients, including 11
variants in known IVAD-related genes and 6 variants
in possible novel disease genes (Table 2). All candidate

variants were confirmed by Sanger sequencing. We classi-
fied these variants into two tiers (4 for disease-causing
variants and 13 for susceptibility variants), in which
disease-causing variants demonstrate reported pathogenici-
ty (Fig. 1), while the susceptibility variants required
additional evidence to establish their contribution to the
disease.

Mutational spectrums revealed for known IVAD
candidate genes

Because the genetic factors underlying nonsyndromic
IVAD have only recently begun to be understood, we first
examined the 25 genes known to cause connective tissue
disorders manifesting artery or aortic dissections according
to the HGMD and OMIM databases (Table S1).

Previously reported disease-causing variants were
found in two genes, COL3A1 (n= 3) and FBN1 (n= 1)
(Table 2). Two reported heterozygous variants in COL3A1,
c.3133G>A (p.Ala1045Thr) and c.1815+5G>A, were

Table 1 Demographic and clinical characteristics of the study cohort

Characteristics IVAD cohort
(n= 44)

Age of diagnosis, mean (SD), yr 42.1 (17.7)

Male, no. (%) 35 (80)

Under 18 yr, no. (%) 7 (16)

Hypertension, no. (%) 18 (41)

Hyperlipemia, no. (%) 1 (2)

Smoking, no. (%) 18 (41)

Main symptom

Hemorrhage, no. (%) 3 (7)

Headache, no. (%) 20 (46)

Ischemia, no. (%) 11 (25)

Mass effect, no. (%) 5 (11)

Asymptom, no. (%) 5 (11)

Characteristics of IVAD

Size, mean (SD), mm 8.5 (5.2)

Length, mean (SD), mm 18.8 (11.5)

Site

VA, no. (%) 35 (80)

BA, no. (%) 6 (14)

VBA, no. (%) 3 (7)

Clinical classificationa

Classic dissecting aneurysm (I), no. (%) 25 (57)

Segmental ectasis (II), no. (%) 3 (7)

Dolichoectatic dissecting aneurysm (III), no. (%) 9 (23)

Large mural bleeding ectasia (IV), no. (%) 7 (16)

IVAD intracranial vertebral–basilar artery dissection, VA vertebral
artery, BA basilar artery, VBA vertebral–basilar artery
aClinical classification referred to Zhang et al. [13]

Whole-exome sequencing reveals known and novel variants in a cohort of intracranial. . . 1121
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observed in patient IVAD49, with unknown chromosomal
phases due to a lack of parental samples. Interestingly, the
c.1815+5G>A variant has been reported in a patient
affected with vascular Ehlers–Danlos syndrome [14] and
a 67-year-old female with thoracic aortic aneurysm dissec-
tion and hyperlipidemia [15]. Although the patient with
Ehlers–Danlos syndrome showed no sign of artery disease,
histological examination demonstrated abnormality in α1
(III) collagen chains, and reverse transcription-PCR con-
firmed the skipping of exon [14], supporting the patho-
genicity of the c.1815+5G>A variant. The c.3133G>A
(p.Ala1045Thr) variant has been observed once in a
cohort of aortic aneurysm and dissection patients [15]. The
third known heterozygous variant in COL3A1, c.1258G>A
(p.Gly420Ser), of unknown inheritance was identified in
patient IVAD61. The same allelic change, which is
absent in the ExAC database, was reported in a 41-year-
old woman with dissecting of mesenteric artery and
right vertebral artery, with the left vertebral artery
showing intramural hemorrhage and patchy fibromuscular
disorganization [16]. Consistent with the reported pheno-
types, IVAD61 is a 54-year-old woman who had dissecting
aneurysm of both left and right vertebral arteries. In an
attempt to explore the potential genotype–phenotype
correlation of COL3A1, we compared the clinical features
of IVAD49 and IVAD61 (Table 3). They both had arter-
y dissection at the section of the vertebral artery (35/44 in
the cohort), and neither of them was affected with hyper-
tension (26/44 in the cohort). Due to the limited sample size
and viable expressivity, we were unable to characterize the
clinical features specific to COL3A1-related IVAD.

In addition, we identified one reported heterozygous
FBN1 variant c.3455C>T (p.Ala1152Val) of unknown
inheritance from patient IVAD51. The variant was descri-
bed in a patient with Marfan syndrome manifesting
cardiovascular problems and dural ectasia [17].

In an effort to extend the mutational spectrums and
disease contribution for the IVAD-related genes mentioned
above, we incorporated our in-house control of 2248
exomes without apparent vascular deformities, and per-
formed a mutational burden test upon the number of
qualified variants in these 25 genes defined as rare (MAF
< 0.01) nonsense/frameshift/in-frame indel/nonsynonymous
variants with high-quality reads.

As a result, we identified 44 qualified variants from our
cohort and 1572 from the in-house controls. The average
number of qualified variants in our IVAD patients (1.0) is
significantly higher than that in the in-house controls (0.7)
(P= 0.002, SKAT-O) (Table S3), suggesting that the
mutational burden of IVAD-related genes likely contributed
to the disease etiology.

On the variant level, we analyzed variants in IVAD
genes that have not been observed in either public or
in-house control populations, also taking into account
the disease-causing model (dominant or recessive) of
these genes. We identified six novel heterozygous
variants in FBN1, COL5A2, NOTCH1, and PDCD10,
and one novel hemizygous variant in FLNA from nine
cases (Table 2). These novel variants are currently
considered as variants of unknown significance and
are consequently grouped into susceptibility variants in
this study.

Table 3 Clinical characteristics of patients carrying potential contributory variants

Sample ID Variant(s) Diagnosed age, yr Sex Position Clinical typeb Hypertension

IVAD61 NM_000090.3(COL3A1):c.1258G>A(p.Gly420Ser) 54 Female Vertebral artery I No

IVAD49 NM_000090.3(COL3A1):c.1815+5G>A
NM_000090.3(COL3A1):c.3133G>A(p.Ala1045Thr)

30 Female Vertebral artery IV No

IVAD51 NM_000138.4(FBN1):c.3455C>T(p.Ala1152Val) 47 Male Vertebral artery I No

IVAD73 NM_002473.4(MYH9):c.487C>T(p.Gln163Ter) 58 Male Vertebral artery III No

IVAD53 NM_005583.4(LYL1):c.748C>T(p.Gln250Ter) 51 Female Vertebral artery I No

IVAD5a NM_022553.4(VPS52):c.1492C>T(p.Arg498Cys) 5 Female Vertebral artery IV No

IVAD23a NM_212503.2(CDK18):c.426G>C(p.Lys142Asn) 8 Female Basilar artery IV No

IVAD26 NM_017617.3(NOTCH1):c.3988C>T(p.Arg1330Cys)
NM_017617.3(NOTCH1):c.3076G>A(p.Asp1026Asn)

60 Male Vertebral artery I No

IVAD47 NM_001456.3(FLNA):c.473A>G(p.Glu158Gly) 39 Male Vertebral artery I No

IVAD54 NM_017617.3(NOTCH1)c.4334T>C 37 Male Vertebral artery I Yes

IVAD62 NM_000393.3(COL5A2):c.4496T>C(p.Val1499Ala) 48 Male Vertebral artery III Yes

IVAD72 NM_000138.4(FBN1):c.571A>G(p.Ser191Gly) 47 Male Vertebral artery IV Yes

IVAD74 NM_145859.1(PDCD10):c.34G>C(p.Ala12Pro) 43 Male Vertebral artery I Yes

IVAD80 NM_000393.3(COL5A2):c.2230-6T>C 22 Male Vertebral /basilar artery I No

IVAD82a NM_019105.6(TNXB):c.7826-4C>T
NM_019105.6(TNXB):c.7802C>T(p.Pro2601Leu)

8 Male Vertebral artery III No

aPatients with their parents sequenced
bClinical type, type I, classic dissecting aneurysms; type II, segmental ectasia; type III, dolichoectatic dissecting aneurysms; type IV, large
mural bleeding ectasia
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Potential novel IVAD-related disease genes

In order to uncover novel disease genes potentially causing
IVAD, we focused on new candidate genes previously not
associated with IVAD-related syndromes, but linked to

relevant biological processes. We identified two de novo
missense variants, two stop-gain variants, and two com-
pound heterozygous variants from five genes (Table 2).

A heterozygous de novo variant c.1492C>T (p.Arg498-
Cys) was identified in VPS52 from a trio family (IVAD5

Fig. 2 Clinical and genetic characteristics of patients carrying variants
in novel IVAD-related genes. a Left, Sanger validation of the VPS52
variant in IVAD5. Middle-left, left vertebral angiogram (lateral view)
reveals a dolichoectatic dissecting aneurysm (arrow) of V4 segment of
the left vertebral artery. Axial high-resolution T2WI (middle-right)
shows a giant dissecting aneurysm with pseudolumen (arrow) of the
left vertebral artery and its serious mass effect. Right, protein structure
predicted by I-TASSER shows replacement of the long side chain of
Arginine528 by a short, sulfur-containing side chain of cysteine.
Surface structure modeling shows that the Arg498 was located at the
surface of the protein. b Left, Sanger validation of the CDK18 variant
in IVAD23. Middle-left, left vertebral angiogram (frontal view)
reveals a junctional dissecting aneurysm (arrow) of vertebral artery
V4 segment and basilar artery in IVAD23. Axial high-resolution T2WI
(middle-right) shows left vertebral artery harboring a giant dissection
(arrow) with thrombosis inside the lumen. Right, the p.Lys142Asn

variant alters a conserved residue. c Left, Sanger validation of the
LYL1 variant in IVAD53. Middle-left, left vertebral angiogram (frontal
view) illustrates a dissecting aneurysm (arrow) of V4 segment of
the left vertebral artery. Middle-right, Axial high-resolution T2WI
displays left vertebral artery dissection (arrow) with pseudolumen.
Right, the NM_005583.4: c.748C>T (p.Gln250Ter) variant creates a
premature stop codon close to the C terminus of the LYL1 protein.
d Left, Sanger validation of theMYH9 variant in IVAD73. Middle-left,
left vertebral angiogram (lateral view) reveals a dissecting aneurysm
of the V4 segment of the left vertebral artery. Middle-right, Axial high-
resolution T2WI confirms left vertebral artery dissection (arrow).
Right, the NM_002473.4:c.487C>T(p.Gln163Ter) variant (in black)
generates a premature stop codon at the beginning of the motor
domain. Three nonsense variants (in gray) previously reported to cause
MYH9-related disorder according to HGMD are located near the
C terminal
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and parents). The patient was a 5-year-old female with a
dissecting aneurysm of the left vertebral artery. She was
admitted for dizziness and severe headache. Intracranial
angiography showed a dolichoectatic dissecting aneurysm
of the left vertebral artery (Fig. 2a). VPS52 encodes a
highly conserved protein forming part of the GARP (Golgi
associated retrograde protein) complex [18]. Epiblast
lineage-specific null mutants showed abnormal vasculo-
genesis in mouse yolk sac, resulting in blood congestion
[19]. The missense variant was absent from public data-
bases and had substantial damaging predictions by bioin-
formatics tools (gerp++= 5.19, combined annotation
dependent depletion (CADD)= 22.7, sorting intolerant
from tolerant (SIFT)= 0.01, and polymorphism phenotyp-
ing v2 (Polyphen2)= 1). The substitution is located
in a highly conserved segment on the outer surface of
VPS52 protein, and could possibly affect its interaction
with other components of the GARP complex or induce a
gain-of-function effect (Fig. 2a). The three-dimensional
structure of the VPS52 protein provided further evidence
of pathogenicity, as the long side chain of Arginine528
was replaced by a short, sulfur-containing side chain of
cysteine (Fig. 2a).

A heterozygous de novo variant in the CDK18 gen-
ec.426G>C (p.Lys142Asn) was identified from another trio
family (IVAD23 and parents) (Fig. 2b). This variant is
predicted to be substantially deleterious (gerp++= 5.14,
CADD= 27.9, SIFT= 0.04, and Polyphen2= 0.996).
IVAD23 was an 8-year-old female who presented
intermittent headache for 3 weeks. Left vertebral
angiogram revealed a large dissecting aneurysm (20 ×
25 mm) of the initial segment of her basilar artery (Fig. 2b).
CDK18 is highly expressed in the human brain and
may affect the regulation of cell cycle as a cyclin-
dependent kinase [20], thus possibly disrupting the
normal growth of brain vessels. CDK18 has not been pre-
viously associated with arterial dissection. Therefore, this
finding may represent a novel disease association for
CDK18.

Truncating variants were identified in two genes that are
potentially associated with IVAD among the singletons. A
heterozygous stop-gain variant of c.748C>T (p.Gln250Ter)
was identified in LYL1 from IVAD53, a 51-year-old
female with a dissecting aneurysm of the left vertebral
artery. The patient had a persistent headache that lasted
for 1 month. Intracranial angiography revealed classic
dissecting aneurysm accompanied with proximal stenosis
of the left vertebral artery (Fig. 2c). LYL1−/− mice showed
accelerated tumor growth and angiogenesis. Moreover,
enhanced angiogenesis is accompanied by a strong reduc-
tion of blood vessel coverage by mural cells, resulting
in leaky blood vessels [21]. Heterozygous loss-of-
function variants in LYL1 have not been reported from

humans in the ExAC database. The premature stop
codon is located near the 3′ end of the coding sequence
(a total length of 280 amino acid) on the last exon
(Fig. 2c), possibly resulting in escaping of the nonsense-
mediated mRNA decay (NMD) and inducing abnormal
folding of the protein. Taken together, our observations
implicate that LYL1 deficiency could contribute to IVAD
in humans.

A heterozygous stop-gain variant c.487C>T (p.
Gln163Ter) was found in MYH9 in a singleton IVAD73, a
61-year-old male with a dissecting aneurysm of the
left vertebral artery. The patient had persistent headaches
for 3 years. Intracranial angiography showed dolichoectatic
dissecting aneurysm of the left vertebral artery (Fig. 2d).
MYH9 is required for macrophage human antigen R (HuR)
translocation and vascular endothelial growth factor-A
(VEGF-A) messenger RNA (mRNA) stabilization, a
potential contributor to arteriogenesis [22]. Defects in
MYH9 have been demonstrated to cause a spectrum
of clinical conditions called MYH9-related disorders
(MYH9-RD). Phenotypes of MYH9-RD include macro-
thrombocytopenia, leukocyte inclusions, and hearing
loss [23], and the pathogenic mechanism of MYH9-RD
is believed to be associated with a dominant-negative
effect [24]. Three nonsense variants reported to cause
MYH9-RD according to HGMD are located near the C
terminal of the protein and might escape NMD (Fig. 2d).
The variant observed in patient IVAD73 generates a
premature stop codon in the exon 3 of MYH9 (Fig. 2d).
The consequence of haploinsufficiency of MYH9 has
not been studied. However, MYH9 is predicted to be
intolerant to loss-of-function alterations, based on the
analysis from the ExAC database (pLI= 1). Therefore,
the potential loss-of-function variant in MYH9 observed
in the IVAD patient may represent a distinct disease
mechanism causing a novel IVAD-related disorder that is
different from MYH9-RDs.

Another rare heterozygous missense variant c.1178G>A
(p.Arg393His) in MYH9 was identified in IVAD47
(Table S4), with ExAC allele frequency of 0.000074 and
robust damaging prediction by bioinformatics tools
(gerp++= 4.96, CADD= 35, SIFT= 0, Polyphen2= 1.0).
IVAD47 had dissecting aneurysm of left vertebral artery.

Biallelic variants of unknown significance were identi-
fied in TNXB in our patient cohort (Table 2). Compound
heterozygous TNXB variants c.7826–4C>T and c.7802C>T
(p.Pro2601Leu) were found in IVAD82, and other possible
biallelic TNXB variants were observed in two singletons
(Table S4). TNXB has been reported to relate with classical-
like Ehlers–Danlos syndrome [4, 25], but not currently
known to cause a vascular subtype of Ehlers–Danlos
syndrome. Therefore, our findings may represent a pheno-
typic expansion for this gene.
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Discussion

In this study, we used a systematic approach to investigate
the potential genetic mechanism underlying IVAD. We
identified known and novel variants in known IVAD-related
genes and variants in potential novel genes.

Fewer than 2% of all IVAD cases occur as a complica-
tion of known monogenic connective syndrome disorders,
mostly vascular Ehlers–Danlos syndrome, according to the
previous large study series [26]. However, rare deleterious
mutations in COL3A1 have been linked to nonsyndromic
artery dissections, with no manifestation of vascular Ehlers–
Danlos syndrome [16, 27], suggesting genetic pleiotropy for
COL3A1. Our findings of pathogenic variants in COL3A1
replicated the previous studies and confirmed the causal
role of these mutations in nonsyndromic IVAD [16].

Common variants have been found to be associated with
increased or decreased risk of VAD or CAD [10], but have
not fully explained the etiology or provided guidance for
clinical management or genetic counseling [28]. Based on
the results from this study and previous studies, the etiology
of isolated IVAD is unlikely to be fully explained by a
monogenetic model for a fraction of patients, even with the
concepts of incomplete penetrance and variable expressivity
[29]. We identified a significant higher mutational rate of
IVAD-associated candidate genes by performing a burden
test upon 44 IVAD patients and 2248 in-house controls. Our
results suggest that rare variants in 25 IVAD-associated
genes could contribute to the genetic background leading to
IVAD, although most of them are not sufficient to cause the
disease independently.

Most previous efforts to reveal the genetic basis of IVAD
examined known connective tissue-related genes using
subjects with a family history from large pedigrees [11, 12].
In contrast, our study design focused on unrelated sporadic
IVAD cases, which allows us to investigate the genetic
etiology of a specific subtype of artery dissection in a more
realistic and practical clinical point of view. Moreover, our
utilization of exome sequencing enabled the possibility of
discovering novel disease genes potentially related to
IVAD. We identified four genes that harbor potential con-
tributory variants, which have biological relationship with
IVAD.

The de novo origin of VPS52 and CDK18 variants are
consistent with the sporadic occurrence of IVAD in two
families. However, further investigation is in need to test the
function of these missense variants before their causal role
could be confirmed. In contrast, truncating variants in LYL1
and MYH9 are most likely to be pathogenic, supported
by the prediction of loss-of-function intolerance score from
ExAC database. Nevertheless, the relationship between
haploinsufficiency of these two genes and IVAD phenotype
still demands further studies.

Compound heterozygous and potential compound het-
erozygous TNXB variants were identified in three patients,
consistent with the inheritance mode in which TNXB causes
classical-like Ehlers–Danlos syndrome [4, 25]. Aside from
the common Ehlers–Danlos syndrome phenotypes such as
joint hypermobility and skin hyperextensibility, vesicour-
eteral reflux [30] has been linked to TNXB mutations,
suggesting its phenotypic pleiotropy. Although TNXB has
not been associated with vascular deformities, TNX pro-
teins are crucial for the activation of transforming growth
factor-β (TGF-β) and subsequent epithelial-to-mesenchymal
transition [31], implicating a potential role in maintaining
vascular integrity.

A small sample size represents the main limitation of our
study. Replication of the burden test signal and novel can-
didate genes in future larger cohorts is warranted. Func-
tional validations of detected variants should also be
conducted in further studies.

To summarize, we performed WES on a sporadic IVAD
cohort composed of 8 trios and 36 singletons. Our findings
of previously reported variants strengthened the patho-
genicity of those variants. Mutational burden test on IVAD
candidate genes supported their contribution to the genetic
background of IVAD. We also identified novel susceptible
variants in known IVAD candidate genes (FBN1, COL5A2,
NOTCH1, PDCD10, and FLNA) and in novel candidate
genes (VPS52, CDK18, LYL1, and MYH9).
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