Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assessment of NKG2C copy number variation in HIV-1 infection susceptibility, and considerations about the potential role of lacking receptors and virus infection

Abstract

Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19–22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Mendoza C, Cabezas T, Caballero E, Requena S, Amengual MJ, Peñaranda M, et al. HIV type 2 epidemic in Spain: Challenges and missing opportunities. AIDS. 2017;31:1353–64.

    Article  PubMed  CAS  Google Scholar 

  2. Gottlieb GS, Raugi DN, Smith RA. 90-90-90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV. 2018;5:e390–9.

    Article  PubMed  Google Scholar 

  3. Shao Y, Williamson C. The HIV-1 epidemic: Low- to middle-income countries. Cold Spring Harb Perspect Med. 2012;2:a007187.

    Article  PubMed  PubMed Central  Google Scholar 

  4. UNAIDS. UNAIDS data 2021. 2021. https://www.unaids.org/en/resources/documents/2021/2021_unaids_data

  5. Anastassopoulou C, Kostrikis L. The Impact of Human Allelic Variation on HIV-1 Disease. Curr HIV Res. 2005;1:185–203.

    Article  Google Scholar 

  6. Aceti A. Pharmacogenetics as a tool to tailor antiretroviral therapy: A review. World J Virol. 2015;4:198–208.

    Article  PubMed  PubMed Central  Google Scholar 

  7. McLaren PJ, Carrington M. The impact of host genetic variation on infection with HIV-1. Nat Immunol. 2015;16:577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568:244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allers K, Schneider T. CCR5Δ32 mutation and HIV infection: basis for curative HIV therapy. Curr Opin Virol. 2015;14:24–9.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas R, Low HZ, Kniesch K, Jacobs R, Schmidt RE, Witte T. NKG2C deletion is a risk factor of HIV infection. AIDS Res Hum Retroviruses. 2012;28:844–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alsulami K, Bolastig N, Dupuy FP, Mabanga T, Gilbert L, Kiani Z, et al. Influence of NKG2C Genotypes on HIV Susceptibility and Viral Load Set Point. J Virol. 2021;95:e00417.

    Article  CAS  PubMed Central  Google Scholar 

  12. Hikami K, Tsuchiya N, Yabe T, Tokunaga K. Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population. Genes Immun. 2003;4:160–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sullivan LC, Clements CS, Beddoe T, Johnson D, Hoare HL, Lin J, et al. The Heterodimeric Assembly of the CD94-NKG2 Receptor Family and Implications for Human Leukocyte Antigen-E Recognition. Immunity 2007;27:900–11.

    Article  CAS  PubMed  Google Scholar 

  14. Kim DK, Kabat J, Borrego F, Sanni TB, You CH, Coligan JE. Human NKG2F is expressed and can associate with DAP12. Mol Immunol. 2004;41:53–62.

    Article  CAS  PubMed  Google Scholar 

  15. Gumá M, Busch LK, Salazar-Fontana LI, Bellosillo B, Morte C, García P, et al. The CD94/NKG2C killer lectin-like receptor constitutes an alternative activation pathway for a subset of CD8+T cells. Eur J Immunol. 2005;35:2071–80.

    Article  PubMed  Google Scholar 

  16. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Yao S, Chen L. Cell Surface Signaling Molecules in the Control of Immune Responses: A Tide Model. Immunity. 2011;34:466–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, et al. Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1–positive patients. J Infect Dis. 2006;194:38–41.

    Article  PubMed  Google Scholar 

  19. Zeddou M, Rahmouni S, Vandamme A, Jacobs N, Frippiat F, Leonard P, et al. Downregulation of CD94/NKG2A inhibitory receptors on CD8 + T cells in HIV infection is more pronounced in subjects with detected viral load than in their aviraemic counterparts. Retrovirology. 2007;4:2–5.

    Article  CAS  Google Scholar 

  20. Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, Mavilio D, et al. Natural Killer Cell Functional Dichotomy in Chronic Hepatitis B and Chronic Hepatitis C Virus Infections. Gastroenterology. 2009;137:1151–60.

    Article  CAS  PubMed  Google Scholar 

  21. Brunetta E, Fogli M, Varchetta S, Bozzo L, Hudspeth KL, Marcenaro E, et al. Chronic HIV-1 viremia reverses NKG2A/NKG2C ratio on natural killer cells in patients with human cytomegalovirus co-infection. Aids. 2010;24:27–34.

    Article  PubMed  Google Scholar 

  22. Ma M, Wang Z, Chen X, Tao A, He L, Fu S, et al. NKG2C+NKG2A−Natural Killer Cells are Associated with a Lower Viral Set Point and may Predict Disease Progression in Individuals with Primary HIV Infection. Front Immunol. 2017;8:1176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. da Silva GK, Vianna P, Veit TD, Crovella S, Catamo E, Cordero EAA, et al. Influence of HLA-G polymorphisms in human immunodeficiency virus infection and hepatitis C virus co-infection in Brazilian and Italian individuals. Infect Genet Evolution. 2014;21:418–23.

    Article  CAS  Google Scholar 

  24. Lahiri DK, Nurnberger JI Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moraru M, Cañizares M, Muntasell A, de Pablo R, López‐Botet M, Vilches C. Assessment of copy‐number variation in the NKG2C receptor gene in a single‐tube and characterization of a reference cell panel, using standard polymerase chain reaction. Tissue Antigens. 2012;80:184–7.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez S, Gaunt TR, Day INM. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169:505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moraru M, Cisneros E, Gómez-Lozano N, de Pablo R, Portero F, Cañizares M, et al. Host Genetic Factors in Susceptibility to Herpes Simplex Type 1 Virus Infection: Contribution of Polymorphic Genes at the Interface of Innate and Adaptive Immunity. J Immunol. 2012;188:4412–20.

    Article  CAS  PubMed  Google Scholar 

  28. Noyola DE, Fortuny C, Muntasell A, Noguera‐Julian A, Muñoz‐Almagro C, Alarcón A, et al. Influence of congenital human cytomegalovirus infection and the NKG2C genotype on NK‐cell subset distribution in children. Eur J Immunol. 2012;42:3256–66.

    Article  CAS  PubMed  Google Scholar 

  29. Rangel‐Ramírez VV, Garcia‐Sepulveda CA, Escalante‐Padrón F, Pérez‐González LF, Rangel‐Castilla A, Aranda‐Romo S, et al. NKG 2C gene deletion in the Mexican population and lack of association to respiratory viral infections. Int J Immunogenetics. 2013;41:126–30.

    Article  CAS  Google Scholar 

  30. Vilchez JR, Torres-Moreno D, Martínez-Senac MM, Trujillo-Santos J, Conesa-Zamora P. Evaluation of the association of NKG2C copy number variations with susceptibility to human papillomavirus-induced cervical lesions. Hum Immunol. 2013;74:1352–6.

    Article  CAS  PubMed  Google Scholar 

  31. Goodier MR, White MJ, Darboe A, Nielsen CM, Goncalves A, Bottomley C, et al. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood. 2014;124:2213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de laTejera-Hernández C, Noyola D, Sánchez-Vargas L, Nava-Zárate N, de La Cruz-Mendoza E, Gómez-Hernández A, et al. Analysis of risk factors associated to cytomegalovirus infection in dentistry students. J Oral Res. 2015;4:197–204.

    Article  Google Scholar 

  33. Redondo-Pachón D, Crespo M, Yélamos J, Muntasell A, Pérez-Sáez MJ, Pérez-Fernández S, et al. Adaptive NKG2C+NK Cell Response and the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients. J Immunol. 2016;198:94–101.

    Article  PubMed  CAS  Google Scholar 

  34. Vietzen H, Pollak K, Honsig C, Jaksch P, Puchhammer-Stöckl E. NKG2C deletion is a risk factor for human cytomegalovirus viremia and disease after lung transplantation. J Infect Dis. 2018;217:802–6.

    Article  CAS  PubMed  Google Scholar 

  35. Vietzen H, Zoufaly A, Traugott M, Aberle J, Aberle SW, Puchhammer-Stöckl E. Deletion of the NKG2C receptor encoding KLRC2 gene and HLA-E variants are risk factors for severe COVID-19. Genet Med. 2021;23:963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borger P. Natural knockouts: Natural selection knocked out. Biology 2017;6:43.

    Article  PubMed Central  CAS  Google Scholar 

  37. della Chiesa M, Falco M, Bertaina A, Muccio L, Alicata C, Frassoni F, et al. Human Cytomegalovirus Infection Promotes Rapid Maturation of NK Cells Expressing Activating Killer Ig–like Receptor in Patients Transplanted with NKG2C−/−Umbilical Cord Blood. J Immunol. 2014;192:1471–9.

    Article  PubMed  CAS  Google Scholar 

  38. Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA, et al. Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep. 2016;15:1088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Comeau EM, Holder KA, Fudge NJ, Grant MD. Cytomegalovirus-driven adaption of natural killer cells in NKG2Cnull human immunodeficiency virus-infected individuals. Viruses 2019;11:239.

    Article  CAS  PubMed Central  Google Scholar 

  40. Toson B, dos Santos EJ, Adelino JE, Sandrin-Garcia P, Crovella S, Louzada-Júnior P, et al. CCR5Δ32 and the genetic susceptibility to rheumatoid arthritis in admixed populations: a multicentre study. Rheumatology. 2017;56:495–7.

    PubMed  Google Scholar 

  41. Adhikari K, Chacón-Duque JC, Mendoza-Revilla J, Fuentes-Guajardo M, Ruiz-Linares A. The Genetic Diversity of the Americas. Annu Rev Genom. Hum Genet. 2017;18:277–96.

    CAS  Google Scholar 

  42. Callegari‐Jacques SM, Grattapaglia D, Salzano FM, Salamoni SP, Crossetti SG, Ferreira ME, et al. Historical genetics: Spatiotemporal analysis of the formation of the Brazilian population. Am J Hum Biol. 2003;15:824–34.

    Article  PubMed  Google Scholar 

  43. Pena SDJ, Di Pietro G, Fuchshuber-Moraes M, Genro JP, Hutz MH, Kehdy F, et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One. 2011;6:e17063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kulmann-Leal B, Ellwanger JH, Chies JAB. CCR5Δ32 in Brazil: Impacts of a European Genetic Variant on a Highly Admixed Population. Front Immunol. 2021:12;758358.

  45. Mela CM, Burton CT, Imami N, Nelson M, Steel A, Gazzard BG, et al. Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. Aids. 2005;19:1761–9.

    Article  CAS  PubMed  Google Scholar 

  46. Fausther-Bovendo H, Wauquier N, Cherfils-Vicini J, Cremer I, Debré P, Vieillard V. NKG2C is a major triggering receptor involved in the Vδ1 T cell-mediated cytotoxicity against HIV-infected CD4 T cells. Aids. 2008;22:217–26.

    Article  CAS  PubMed  Google Scholar 

  47. van Stijn A, Rowshani AT, Yong SL, Baas F, Roosnek E, ten Berge IJM, et al. Human Cytomegalovirus Infection Induces a Rapid and Sustained Change in the Expression of NK Cell Receptors on CD8+T Cells. J Immunol. 2008;180:4550–60.

    Article  PubMed  Google Scholar 

  48. Béziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, et al. CMV drives clonal expansion of NKG2C+NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol. 2012;42:447–57.

    Article  PubMed  CAS  Google Scholar 

  49. Malone DFG, Lunemann S, Hengst J, Ljunggren HG, Manns MP, Sandberg JK, et al. Cytomegalovirus-driven adaptive-like natural killer cell expansions are unaffected by concurrent chronic hepatitis virus infections. Front Immunol. 2017;8:525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vietzen H, Hartenberger S, Aberle SW, Puchhammer-Stöckl E. Dissection of the NKG2C NK cell response against PuumalaOrthohantavirus. PLoSNeglected Tropical Dis. 2021;15:e0010006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. B. Chies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toson, B., Michita, R.T., Matte, M.C.T. et al. Assessment of NKG2C copy number variation in HIV-1 infection susceptibility, and considerations about the potential role of lacking receptors and virus infection. J Hum Genet 67, 475–479 (2022). https://doi.org/10.1038/s10038-022-01029-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-022-01029-w

This article is cited by

Search

Quick links