Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development of a method for the imputation of the multi-allelic serotonin-transporter-linked polymorphic region (5-HTTLPR) in the Japanese population

Abstract

Serotonin-transporter-linked polymorphic region (5-HTTLPR), a variable number of tandem repeats in the promoter region of serotonin transporter gene, is classified into short (S) and long (L) alleles. Initial case-control association studies claiming the risks of the S allele in depression and anxiety were not completely supported by recent studies. However, most studies, especially those on East Asian populations, have overlooked the complexity of 5-HTTLPR, which involves multiple different alleles with distinct functional properties. To address this issue, distinguishing multiple 5-HTTLPR alleles is essential. Here, using the 5-HTTLPR genotypes previously determined by exhaustive Sanger sequencing of approximately 1,500 Japanese subjects and their comprehensive SNP data, we constructed a method for 5-HTTLPR genotype imputation. We identified 28 tag SNPs for the imputation of four major 5-HTTLPR alleles, which collectively account for 97.6% of 5-HTTLPR alleles in the Japanese population. Our imputation method, achieved an accuracy of 0.872 in cross-validation, will contribute to association analysis of 5-HTTLPR in the Japanese subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanova M, Kohout P. Serotonin-its synthesis and roles in the healthy and the critically ill. Int J Mol Sci. 2021;22:4837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharm Ther. 2008;31:187–99.

    Article  CAS  Google Scholar 

  3. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canli T, Lesch KP. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci. 2007;10:1103–9.

    Article  CAS  PubMed  Google Scholar 

  5. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083–152.

    Article  CAS  PubMed  Google Scholar 

  6. Iurescia S, Seripa D, Rinaldi M. Role of the 5-HTTLPR and SNP promoter polymorphisms on serotonin transporter gene expression: a closer look at genetic architecture and in vitro functional studies of common and uncommon allelic variants. Mol Neurobiol. 2016;53:5510–26.

    Article  CAS  PubMed  Google Scholar 

  7. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–4.

    Article  CAS  PubMed  Google Scholar 

  8. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.

    Article  CAS  PubMed  Google Scholar 

  9. Heils A, Mössner R, Lesch KP. The human serotonin transporter gene polymorphism–basic research and clinical implications. J Neural Transm. 1997;104:1005–14.

    Article  CAS  PubMed  Google Scholar 

  10. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sen S, Burmeister M, Ghosh D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am J Med Genet B Neuropsychiatr Genet. 2004;127b:85–9.

    Article  PubMed  Google Scholar 

  12. Culverhouse RC, Saccone NL, Horton AC, Ma Y, Anstey KJ, Banaschewski T, et al. Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol Psychiatry. 2018;23:133–42.

    Article  CAS  PubMed  Google Scholar 

  13. Border R, Johnson EC, Evans LM, Smolen A, Berley N, Sullivan PF, et al. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am J Psychiatry. 2019;176:376–87.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ikegame T, Hidaka Y, Nakachi Y, Murata Y, Watanabe R, Sugawara H, et al. Identification and functional characterization of the extremely long allele of the serotonin transporter-linked polymorphic region. Transl Psychiatry. 2021;11:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet. 2006;78:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakamura M, Ueno S, Sano A, Tanabe H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry. 2000;5:32–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ikegame T, Bundo M, Okada N, Murata Y, Koike S, Sugawara H, et al. Promoter activity-based case-control association study on SLC6A4 highlighting hypermethylation and altered amygdala volume in male patients with schizophrenia. Schizophr Bull. 2020;46:1577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.

    Article  CAS  PubMed  Google Scholar 

  19. Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003;165:2213–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naito T, Suzuki K, Hirata J, Kamatani Y, Matsuda K, Toda T, et al. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat Commun. 2021;12:1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Border R, Smolen A, Corley RP, Stallings MC, Brown SA, Conger RD, et al. Imputation of behavioral candidate gene repeat variants in 486,551 publicly-available UK Biobank individuals. Eur J Hum Genet. 2019;27:963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ninomiya T, Nakaji S, Maeda T, Yamada M, Mimura M, Nakashima K, et al. Study design and baseline characteristics of a population-based prospective cohort study of dementia in Japan: the Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Environ Health Prev Med. 2020;25:64.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akiyama M, Ishigaki K, Sakaue S, Momozawa Y, Horikoshi M, Hirata M, et al. Characterizing rare and low-frequency height-associated variants in the Japanese population. Nat Commun. 2019;10:4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68:978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76:449–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023;51:D1188–d95.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI grant numbers JP23H02840, JP23H03838, and JP22K07583, and by AMED grant number JP19dm0207074, JP23dk0207053, JP24wm0625302, and JP24wm0625001, and by JST Moonshot R&D Grant Number JPMJMS2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ohashi or Kazuya Iwamoto.

Ethics declarations

Competing interests

Some of the authors declared financial and non-financial relationships and activities, and conflicts of interest regarding this manuscript as indicated in the supplementary materials. The sponsor had no role in study design, data collection, data analysis, data interpretation or writing of the report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagida, Y., Naka, I., Nakachi, Y. et al. Development of a method for the imputation of the multi-allelic serotonin-transporter-linked polymorphic region (5-HTTLPR) in the Japanese population. J Hum Genet 70, 41–45 (2025). https://doi.org/10.1038/s10038-024-01296-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-024-01296-9

Search

Quick links