Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Beyond CHD7 gene: unveiling genetic diversity in clinically suspected CHARGE syndrome

Abstract

The Verloes or Hale diagnostic criteria have been applied for diagnosing CHARGE syndrome in suspected patients. This study was conducted to evaluate the diagnostic rate of CHD7 according to these diagnostic criteria in suspected patients and also to investigate other genetic defects in CHD7-negative patients. The clinical findings and the results of genetic testing of CHD7, chromosome microarray, exome sequencing, or genome sequencing of 59 subjects were reviewed. CHD7 pathogenic variants were identified in 78% of 46 subjects who met either the Verloes or Hale diagnostic criteria and in 87% of 38 subjects who met both criteria, whereas no CHD7 variant was detected in 13 subjects who met neither criterion. Among 23 patients without the CHD7 variant, six genetic diseases were identified in 7 patients, including Wolf–Hirschhorn syndrome, 1q21 deletion syndrome, 19q13 microdeletion, and pathogenic variants in PLCB4, TRRAP, and OTX2. Based on these comprehensive analyses, the overall diagnostic rate was 73% for seven different genetic diseases. This study emphasizes the importance of comprehensive clinical and genetic evaluation in patients with clinically suspected CHARGE syndrome, recognizing the overlapping phenotypes in other rare genetic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study can be obtained from the corresponding author upon reasonable request.

References

  1. Pagon RA, Graham JM, Jr, Zonana J, Yong S-L. Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr. 1981;99:223–7.

    Article  CAS  PubMed  Google Scholar 

  2. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.

    Article  CAS  PubMed  Google Scholar 

  3. Sanlaville D, Verloes A. CHARGE syndrome: an update. Eur J Hum Genet. 2007;15:389–99.

    Article  CAS  PubMed  Google Scholar 

  4. Blake KD, Davenport SL, Hall BD, Hefner MA, Pagon RA, Williams MS, et al. CHARGE association: an update and review for the primary pediatrician. Clin Pediatr. 1998;37:159–73.

    Article  CAS  Google Scholar 

  5. Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Wiley Online Libr. 2005;133A:306–8.

    Google Scholar 

  6. Hale CL, Niederriter AN, Green GE, Martin DM. Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. Am J Med Genet Part A. 2016;170:344–54.

    Article  CAS  Google Scholar 

  7. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, et al. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78:303–14.

    Article  CAS  PubMed  Google Scholar 

  8. Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet Part A. 2010;152:674–86.

    Article  Google Scholar 

  9. Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet. 2005;14:3463–76.

    Article  CAS  PubMed  Google Scholar 

  10. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463:958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lalani S, Safiullah A, Molinari L, Fernbach S, Martin D, Belmont J. SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet. 2004;94:e94–e94. 41

    Article  Google Scholar 

  12. Oh W-J, Gu C. The role and mechanism-of-action of Sema3E and Plexin-D1 in vascular and neural development. Elsevier. 2013;24:156–62.

    CAS  Google Scholar 

  13. Corsten-Janssen N, Saitta SC, Hoefsloot LH, McDonald-McGinn DM, Driscoll DA, Derks R, et al. More clinical overlap between 22q11. 2 deletion syndrome and CHARGE syndrome than often anticipated. Mol Syndromol. 2013;4:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schulz Y, Freese L, Mänz J, Zoll B, Völter C, Brockmann K, et al. CHARGE and Kabuki syndromes: a phenotypic and molecular link. Hum Mol Genet. 2014;23:4396–405.

    Article  CAS  PubMed  Google Scholar 

  15. Moccia A, Srivastava A, Skidmore JM, Bernat JA, Wheeler M, Chong JX, et al. Genetic analysis of CHARGE syndrome identifies overlapping molecular biology. Genet Med. 2018;20:1022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng H, Zhang Y, Xiao H, Yao Y, Liu X, Su B, et al. Diverse phenotypes in children with PAX2‐related disorder. Mol Genet Genom Med. 2019;7:e701.

    Article  Google Scholar 

  17. Luquetti DV, Hing AV, Rieder MJ, Nickerson DA, Turner EH, Smith J, et al. “Mandibulofacial dysostosis with microcephaly” caused by EFTUD2 mutations: expanding the phenotype. Am J Med Genet Part A. 2013;161:108–13.

    Article  CAS  Google Scholar 

  18. Engelen E, Akinci U, Bryne JC, Hou J, Gontan C, Moen M, et al. Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat Genet. 2011;43:607–11.

    Article  CAS  PubMed  Google Scholar 

  19. Krumm N, Sudmant PH, Ko A, O'roak BJ, Malig M, Coe BP, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22:1525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Asakura Y, Toyota Y, Muroya K, Kurosawa K, Fujita K, Aida N, et al. Endocrine and radiological studies in patients with molecularly confirmed CHARGE syndrome. J Clin Endocrinol Metab. 2008;93:920–4.

    Article  CAS  PubMed  Google Scholar 

  22. Sohn YB, Ko JM, Shin CH, Yang SW, Chae J-H, Lee K-A. Cerebellar vermis hypoplasia in CHARGE syndrome: clinical and molecular characterization of 18 unrelated Korean patients. J Hum Genet. 2016;61:235–9.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas AT, Waite J, Williams CA, Kirk J, Oliver C, Richards C. Phenotypic characteristics and variability in CHARGE syndrome: a PRISMA compliant systematic review and meta-analysis. J Neurodev Disord. 2022;14:49.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castillo A, Kramer N, Schwartz CE, Miles JH, DuPont BR, Rosenfeld JA, et al. 19q13. 32 microdeletion syndrome: three new cases. Eur J Med Genet. 2014;57:654–8.

    Article  PubMed  Google Scholar 

  25. Shelby E-S, Morris M, Pădure L, Mirea A, Cocoș R, Cărămizaru A, et al. Expanding the clinical phenotype of 19q interstitial deletions: a new case with 19q13. 32-q13. 33 deletion and short review of the literature. Genes. 2022;13:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Travan L, Naviglio S, De Cunto A, Pellegrin A, Pecile V, Spinelli AM, et al. Phenotypic expression of 19q13. 32 microdeletions: Report of a new patient and review of the literature. Am J Med Genet Part A. 2017;173:1970–4.

    Article  PubMed  Google Scholar 

  27. Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, et al. Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet. 2005;76:1008–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harvey AS, Leaper PM, Bankier A. CHARGE association: clinical manifestations and developmental outcome. Am J Med Genet. 1991;39:48–55.

    Article  CAS  PubMed  Google Scholar 

  29. Tellier AL, Cormier-Daire V, Abadie V, Amiel J, Sigaudy S, Bonnet D, et al. CHARGE syndrome: report of 47 cases and review. Am J Med Genet. 1998;76:402–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel J, et al. CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab. 2005;90:5621–6.

    Article  CAS  PubMed  Google Scholar 

  31. Issekutz KA, Graham JM Jr, Prasad C, Smith IM, Blake KD. An epidemiological analysis of CHARGE syndrome: preliminary results from a Canadian study. Am J Med Genet Part A. 2005;133:309–17.

    Article  Google Scholar 

  32. Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, et al. OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet. 2011;79:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gregory LC, Gergics P, Nakaguma M, Bando H, Patti G, McCabe MJ, et al. The phenotypic spectrum associated with OTX2 mutations in humans. Eur J Endocrinol. 2021;185:121–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basson MA. Epistatic interactions between Chd7 and Fgf8 during cerebellar development: Implications for CHARGE syndrome. Rare Dis. 2014;2:28688.

    Article  Google Scholar 

  35. Jiang X, Zhou Y, Xian L, Chen W, Wu H, Gao X. The mutation in Chd7 causes misexpression of Bmp4 and developmental defects in telencephalic midline. Am J Pathol. 2012;181:626–41.

    Article  CAS  PubMed  Google Scholar 

  36. Hever A, Williamson K, Van Heyningen V. Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet. 2006;69:459–70.

    Article  CAS  PubMed  Google Scholar 

  37. Harding P, Moosajee M. The molecular basis of human anophthalmia and microphthalmia. J Dev Biol. 2019;7:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. George A, Cogliati T, Brooks BP. Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Exp Eye Res. 2020;193:107940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirschhorn K, Cooper HL, Firschein IL. Deletion of short arms of chromosome 4–5 in a child with defects of midline fusion. Humangenetik. 1965;1:479–82.

    CAS  PubMed  Google Scholar 

  40. Bailey R. Wolf–hirschhorn syndrome: a case study and disease overview. Adv Neonatal Care. 2014;14:318–21.

    Article  PubMed  Google Scholar 

  41. Zollino M, Di Stefano C, Zampino G, Mastroiacovo P, Wright TJ, Sorge G, et al. Genotype–phenotype correlations and clinical diagnostic criteria in Wolf–Hirschhorn syndrome. Am J Med Genet. 2000;94:254–61.

    Article  CAS  PubMed  Google Scholar 

  42. Nevado J, Ho KS, Zollino M, Blanco R, Cobaleda C, Golzio C, et al. International meeting on Wolf–Hirschhorn syndrome: Update on the nosology and new insights on the pathogenic mechanisms for seizures and growth delay. Am J Med Genet Part A. 2020;182:257–67.

    Article  PubMed  Google Scholar 

  43. Sawan C, Hernandez-Vargas H, Murr R, Lopez F, Vaissière T, Ghantous AY, et al. Histone acetyltransferase cofactor Trrap maintains self-renewal and restricts differentiation of embryonic stem cells. Stem Cells. 2013;31:979–91.

    Article  CAS  PubMed  Google Scholar 

  44. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.

    Article  CAS  PubMed  Google Scholar 

  45. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 2012;44:1365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cogné B, Ehresmann S, Beauregard-Lacroix E, Rousseau J, Besnard T, Garcia T, et al. Missense variants in the histone acetyltransferase complex component gene TRRAP cause autism and syndromic intellectual disability. Am J Hum Genet. 2019;104:530–41.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Conception or design: DK and BHL. Acquisition, analysis, or interpretation of data: DK, JHY, HB, SH, GHS, JYK, YSJ, HSD, SK, IHC, GHK, JHK, JHC, and BHL. Drafting or revising the work: DK and BHL. Final approval of the manuscript: DK, JHY, HB, SH, GHS, JYK, YSJ, HSD, SK, IHC, GHK, JHK, JHC, and BHL.

Funding

This research was supported by a grant of the Research Program funded by the Korea Disease Control and Prevention Agency, Republic of Korea (2021-ER0402-00), the Asan Institute for Life Sciences (Seoul, Republic of Korea) (2024IP0076), 3Billions Inc. (Seoul, Republic of Korea), and Inocras Inc. (Daejeon, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Hee Lee.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Yoon, JH., Bae, H. et al. Beyond CHD7 gene: unveiling genetic diversity in clinically suspected CHARGE syndrome. J Hum Genet 70, 243–248 (2025). https://doi.org/10.1038/s10038-025-01325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-025-01325-1

This article is cited by

Search

Quick links