Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assessment of different promoters in lentiviral vectors for expression of the N-acetyl-galactosamine-6-sulfate sulfatase gene

Abstract

Mucopolysaccharidosis IVA (MPS IVA) is caused by pathogenic variants in the GALNS gene encoding N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, leading to glycosaminoglycan (GAG) accumulation in multiple tissues, resulting in progressive skeletal dysplasia and poor quality of life. There is currently no effective treatment for this skeletal disease. This study proposes a novel lentiviral vector (LV)-based gene therapy that produces and secretes the active GALNS enzyme at supraphysiologic levels within the cells. LVs carrying the native GALNS encoding sequence (cDNA) were made under three different promoters: CBh, COL2A1, and CD11b. Moreover, we designed LVs carrying the native GALNS cDNA tagged with D8 octapeptide under the CD11b promoter and a human codon-optimized GALNS cDNA under the CBh promoter, respectively. Transduced HEK293 cells, HepG2 cells, and MPS IVA fibroblasts and chondrocytes were cultured for 8 and 30 days, and the media were collected every three days. The enzyme activity, GAG levels, and vector copy numbers (VCNs) in these cells and media were analyzed. LV with the COL2A1 promoter produced the highest enzyme activity in HEK293, HepG2, MPS IVA fibroblasts, and chondrocytes, followed by LV with the CBh promoter. VCNs were higher in MPS IVA fibroblasts treated with LV-CBh-hGALNS and in HepG2 cells treated with LV-CD11b-hGALNS than in HEK293 cells. Accumulated GAGs were normalized to wild-type levels by the LV gene therapy, especially with CBh and COL2A1 promoters. These findings, if further validated, could significantly impact the treatment of MPS IVA, offering a more effective and feasible treatment option.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intracellular enzyme activity of MPS IVA fibroblasts treated under different MOIs with LVs.
Fig. 2: Enzyme activity in the culture media of fibroblasts.
Fig. 3: Therapeutic efficacy of LVs in MPS IVA chondrocytes treated with different LVs at the MOI of 20.
Fig. 4: GAG levels in MPS IVA fibroblasts and chondrocytes at MOI 20.
Fig. 5: Vector copy numbers at MOIs of 5, 10, 15, and 20.
Fig. 6: Immunofluorescence screening of EGFP fluorescence in MPS IVA fibroblasts at the increasing MOIs (5, 10, 15, and 20).

Similar content being viewed by others

References

  1. Celik B, Tomatsu SC, Tomatsu S, Khan SA. Epidemiology of mucopolysaccharidoses update. Diagnostics. 2021;11:273.

  2. HGMD® gene result. GALNS. 2023. Available from: http://www.hgmd.cf.ac.uk/ac/gene.php?gene=GALNS.

  3. Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, et al. Molecular genetics and metabolism, special edition: diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab. 2018;125:18–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sawamoto K, González JVÁ, Piechnik M, Otero FJ, Couce ML, Suzuki Y, et al. Mucopolysaccharidosis IVA: diagnosis, treatment, and management. Int J Mol Sci. 2020;21. Available from: https://pubmed.ncbi.nlm.nih.gov/32102177/.

  5. Yasuda E, Suzuki Y, Shimada T, Sawamoto K, Mackenzie WG, Theroux MC, et al. Activity of daily living for Morquio A syndrome. Mol Genet Metab. 2016;118:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura-Utsunomiya A, Nakamae T, Kagawa R, Karakawa S, Sakata S, Sakura F, et al. A case report of a Japanese boy with Morquio A syndrome: effects of enzyme replacement therapy initiated at the age of 24 months. Int J Mol Sci. 2020;21:989.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Doherty C, Stapleton M, Piechnik M, Mason RW, Mackenzie WG, Yamaguchi S, et al. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J Hum Genet. 2019;64:625–35.

    Article  PubMed  Google Scholar 

  8. Do Cao J, Wiedemann A, Quinaux T, Battaglia-Hsu SF, Mainard L, Froissart R, et al. 30 months follow-up of an early enzyme replacement therapy in a severe Morquio A patient: about one case. Mol Genet Metab Rep. 2016;9:42–5.

    PubMed  PubMed Central  Google Scholar 

  9. Frigeni M, Rodriguez-Buritica DF, Saavedra H, Gunther KA, Hillman PR, Balaguru D, et al. The youngest pair of siblings with mucopolysaccharidosis type IVA to receive enzyme replacement therapy to date: a case report. Am J Med Genet A. 2021;185:3510–6.

    Article  PubMed  Google Scholar 

  10. Barak S, Anikster Y, Sarouk I, Stern E, Eisenstein E, Yissar T, et al. Long-term outcomes of early enzyme replacement therapy for mucopolysaccharidosis IV: clinical case studies of two siblings. Diagnostics. 2020;10:108.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qi Y, Musson DG, Schweighardt B, Tompkins T, Jesaitis L, Shaywitz AJ, et al. Pharmacokinetic and pharmacodynamic evaluation of elosulfase alfa, an enzyme replacement therapy in patients with Morquio A syndrome. Clin Pharmacokinet. 2014;53:1137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomatsu S, Sawamoto K, Shimada T, Bober MB, Kubaski F, Yasuda E, et al. Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs. 2015;3:1279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ponder KP, Immune response hinders therapy for lysosomal storage diseases. J Clin Invest. 2008;118:2686–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Long B, Tompkins T, Decker C, Jesaitis L, Khan S, Slasor P, et al. Long-term immunogenicity of elosulfase alfa in the treatment of morquio a syndrome: results from MOR-005, a phase III extension study. Clin Ther. 2017;39:118–129.e3.

    Article  PubMed  Google Scholar 

  15. Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, et al. Immunogenicity of elosulfase alfa, an enzyme replacement therapy in patients with Morquio A syndrome: results from MOR-004, a phase III trial. Clin Ther. 2015;37:1012–1021.e6.

    Article  CAS  PubMed  Google Scholar 

  16. Melton AC, Soon RK, Tompkins T, Long B, Schweighardt B, Qi Y, et al. Antibodies that neutralize cellular uptake of elosulfase alfa are not associated with reduced efficacy or pharmacodynamic effect in individuals with Morquio A syndrome. J Immunol Methods. 2017;440:41–51.

    Article  CAS  PubMed  Google Scholar 

  17. Tomatsu S, Montaño AM, Ohashi A, Gutierrez MA, Oikawa H, Oguma T, et al. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet. 2008;17:815–24.

    Article  CAS  PubMed  Google Scholar 

  18. Chinen Y, Higa T, Tomatsu S, Suzuki Y, Orii T, Hyakuna N. Long-term therapeutic efficacy of allogenic bone marrow transplantation in a patient with mucopolysaccharidosis IVA. Mol Genet Metab Rep. 2014;1:31–41.

    PubMed  PubMed Central  Google Scholar 

  19. Yabe H, Tanaka A, Chinen Y, Kato S, Sawamoto K, Yasuda E, et al. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab. 2016;117:84–94.

    Article  CAS  PubMed  Google Scholar 

  20. Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, et al. Sex difference leads to differential gene expression patterns and therapeutic efficacy in mucopolysaccharidosis IVA murine model receiving AAV8 gene therapy. Int J Mol Sci. 2022;23:12693.

  21. Wang J, Luan Z, Jiang H, Fang J, Qin M, Lee V, et al. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis-a ten-year report from the China children transplant group. Biol Blood Marrow Transpl. 2016;22:2104–8.

    Article  Google Scholar 

  22. Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, et al. Recommendations for the management of MPS IVA: systematic evidence- and consensus-based guidance. Orphanet J Rare Dis. 2019;14:137.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, et al. Hematopoietic stem cell transplantation for mucopolysaccharidoses: past, present, and future. Biol Blood Marrow Transplant. 2019;25:e226–46.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sawamoto K, Chen HH, Alméciga-Díaz CJ, Mason RW, Tomatsu S. Gene therapy for Mucopolysaccharidoses. Mol Genet Metab. 2018;123:59.

    Article  CAS  PubMed  Google Scholar 

  25. Sawamoto K, Tomatsu S. Development of substrate degradation enzyme therapy for mucopolysaccharidosis IVA murine model. Int J Mol Sci. 2019;20:4139.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Celik B, Rintz E, Sansanwal N, Khan S, Bigger B, Tomatsu S. Lentiviral vector-mediated ex vivo hematopoietic stem cell gene therapy for mucopolysaccharidosis IVA murine model. Hum Gene Ther. 2024;35:917–37.

    Article  CAS  PubMed  Google Scholar 

  27. Hintze JP, Tomatsu S, Fujii T, Montaño AM, Yamaguchi S, Suzuki Y, et al. Comparison of liquid chromatography-tandem mass spectrometry and sandwich ELISA for determination of keratan sulfate in plasma and urine. Biomark Insights. 2011;6:69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, De Carvalho TG, et al. Validation of keratan sulfate level in mucopolysaccharidosis type IVA by liquid chromatography-tandem mass spectrometry. J Inherit Metab Dis. 2010;33:S35–42.

  29. Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, De Carvalho TG, et al. Validation of keratan sulfate level in mucopolysaccharidosis type IVA by liquid chromatography-tandem mass spectrometry. J Inherit Metab Dis. 2010 [cited 2023 Feb 1];33SUPPL. 3). Available from: https://pubmed.ncbi.nlm.nih.gov/20107903/.

  30. Khan SA, Mason RW, Giugliani R, Orii K, Fukao T, Suzuki Y, et al. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab. 2018;125:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khan SA, Nidhi FNU, Amendum PC, Tomatsu S. Detection of Glycosaminoglycans in Biological Specimens. Methods Mol Biol. 2023;2619:3–24.

  32. Leal AF, Alméciga-Díaz CJ. Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther. 2023;30:107–114.

  33. Tomatsu S, Montaño AM, Gutierrez M, Grubb JH, Oikawa H, Dung VC, et al. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab. 2007;91:69–78.

    Article  CAS  PubMed  Google Scholar 

  34. Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, et al. Liver-targeted AAV8 gene therapy ameliorates skeletal and cardiovascular pathology in a mucopolysaccharidosis IVA murine model. Mol Ther Methods Clin Dev [Internet]. 2020;18:50–61.

    Article  CAS  PubMed  Google Scholar 

  35. Schlimgen R, Howard J, Wooley D, Thompson M, Baden LR, Yang OO, et al. Risks associated with lentiviral vector exposures and prevention strategies. J Occup Environ Med. 2016;58:1159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, et al. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med. 2022;28:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alméciga-Díaz CJ, Rueda-Paramo MA, Espejo AJ, Echeverri OY, Montaño A, Tomatsu S, et al. Effect of elongation factor 1α promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol Biol Rep. 2009;36:1863–70.

    Article  PubMed  Google Scholar 

  38. Zielske SP, Lingas KT, Li Y, Gerson SL. Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment. Molecular Ther. 2004;9:923–31.

    Article  CAS  Google Scholar 

  39. Corre G, Seye A, Frin S, Ferrand M, Winkler K, Luc C, et al. Lentiviral standards to determine the sensitivity of assays that quantify lentiviral vector copy numbers and genomic insertion sites in cells. Gene Ther. 2022;29:536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110:1448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Puentes-Tellez MA, Sánchez OF, Rojas-Rodriguez F, Benincore-Flóre E, Barbosa H, Alméciga Díaz CJ. Evaluation of HIV–1 derived lentiviral vectors as transductors of Mucopolysaccharidosis type IV a fibroblasts. Gene. 2021;780:145527.

    Article  CAS  PubMed  Google Scholar 

  42. Kos S, Tesic N, Kamensek U, Blagus T, Cemazar M, Kranjc S, et al. Improved specificity of gene electrotransfer to skin using pDNA under the control of collagen tissue-specific promoter. J Membr Biol. 2015;248:919–28.

    Article  CAS  PubMed  Google Scholar 

  43. Karaosmanoğlu O, Banerjee S, Sivas H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cellular Oncol. 2018;41:439–53.

    Article  Google Scholar 

  44. Bougioukli S, Sugiyama O, Pannell W, Ortega B, Tan MH, Tang AH, et al. Gene therapy for bone repair using human cells: superior osteogenic potential of Bone Morphogenetic Protein 2 –transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum Gene Ther. 2018;29:507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wright JF. Quantification of CpG motifs in rAAV genomes: avoiding the toll. Molecular Ther. 2020;28:1756–8.

    Article  CAS  Google Scholar 

  46. Tomatsu S. Mucopolysaccharidosis IVA: identification of mutations and methylation study in GALNS gene. J Med Genet. 2004;41:e98–e98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BC was supported by the National MPS Society (ID 4892) and the Turkish Ministry of Education (YLSY2017-Doctoral Scholarship). This work was also supported by grants from the Austrian MPS society, A Cure for Robert, Inc., The Carol Ann Foundation, Angelo R. Cali & Mary V. Cali Family Foundation, Inc., The Vain and Harry Fish Foundation, Inc., The Bennett Foundation, Jacob Randall Foundation, and Nemours Funds. ST was supported by an Institutional Development Award from the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (NICHD) (1R01HD102545-01A1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BC; methodology, BC; software, BC; validation, BC, AFL, SK, and ST; formal analysis, BC; investigation, BC, AFL, SK; resources, ST; data curation, BC, and ST; writing—original draft preparation, BC; writing—review and editing, BC; visualization, BC; supervision, ST; project administration, BC, and ST; funding acquisition, ST. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shunji Tomatsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, B., Leal, A.F., Khan, S. et al. Assessment of different promoters in lentiviral vectors for expression of the N-acetyl-galactosamine-6-sulfate sulfatase gene. J Hum Genet 70, 463–473 (2025). https://doi.org/10.1038/s10038-025-01353-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-025-01353-x

Search

Quick links