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Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by compromised neuromuscular
signal transmission due to pathogenic germline variants in genes expressed at the neuromuscular junction (NMJ). A total of 40
genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DES,
DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MACF1, MUSK, MYO9A, PLEC, PREPL, PTPN11, PURA, RAPSN, RPH3A, SCN4A,
SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TEFM, TOR1AIP1, UNC13A, UNC50 and VAMP1). The 40 genes are putatively classified into
13 subtypes by pathomechanical, clinical, and therapeutic features. A unique feature shared by recently identified genes is that
CMS is concomitantly recognized in other mostly severer diseases. For example, four recently identified genes exhibit the following
phenotypes: PURA-CMS, developmental delay; TEFM-CMS, mitochondrial disease; PTPN11-CMS, Noonan syndrome/Leopard
syndrome; and DES-CMS, desmin myopathy. Conversely, these diseases are not always associated with CMS, although genetic and/
or environmental factors that determine the involvement of the NMJ remain to be identified. In this review, particular emphasis will
be placed on five recently identified genes (MACF1, TEFM, PTPN11, DES and UNC50).

Journal of Human Genetics; https://doi.org/10.1038/s10038-025-01355-9

INTRODUCTION

CMS are caused by pathogenic germline variants in genes
expressed at the neuromuscular junction (NMJ), and are
characterized by defective neuromuscular signal transduction
[1, 2]. Pathogenic variants have been identified in 40 genes (AGRN,
ALG14, ALG2, CHAT, CHD8, CHRNAT1, CHRNBI1, CHRND, CHRNE,
CHRNG, COL13A1, COLQ, DES, DOK7, DPAGT1, GFPT1, GMPPB,
LAMA5, LAMB2, LRP4, MACF1, MUSK, MYO9A, PLEC, PREPL, PTPN11,
PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25,
SYT2, TEFM, TOR1AIP1, UNC13A, UNC50 and VAMPT) (Fig. 1). The
causative genes have been classified into three categories of
presynaptic, synaptic, and postsynaptic CMS. To delineate clinical,
pathomechanical, and therapeutic features of CMS, we classified
the 40 genes into 13 subtypes (Tables 1 and 2). We extensively
reviewed 35 genes causing CMS in 2023 [1]. In addition to the
epidemiology, inheritance, and therapeutic features of CMS, five
recently identified genes in CMS (MACF1, TEFM, PTPN11, DES and
UNC50) will be introduced in detail in this review.

EPIDEMIOLOGY

The prevalences of CMS per million in total population are 1.8 (18/
10,000,000) in Brazil [3], 1.8 (64/35,500,000) in Spain [4], 3.1 (28/
9,000,000) in Austria [5], and 3.2 (37/11,900,000) in Belgium [6],
which gives rise to the weighted average of 2.2 per million in total
population. Similarly, the prevalences of CMS per million under
age 18 years are 9.2 (123/13,900,000) in UK [7], 22.2 (8/360,000) in
Slovenia [8] and 10.5 (28/2,670,000) in Austria [5], and the
weighted average becomes 9.7 per million under age 18 years.

INHERITANCE

All except for the following five forms of CMS are caused by loss-of-
function variants with autosomal recessive inheritance (Table 2).
Autosomal dominant inheritance or hemiallelic de novo variant is
observed in slow-channel CMS (SCCMS) [1], PURA-CMS [9], PTPN11-
CMS [10], SNAP25-CMS [11, 12] and some [13-15] but not all [16-18]
patients of SYT2-CMS. SCCMS is caused by a missense variant that
prolongs the channel openings of acetylcholine receptors (AChRs),
and 50% abnormal AChRs are sufficient to cause SCCMS [1]. PURA-
CMS and PTPN11-CMS are associated with developmental delay and
are likely to be caused by loss-of-function of PURA [9] and gain-of-
function of PTPN11 [10], respectively. Both SNAP25-CMS [11, 12] and
SYT2-CMS [13-18] show LEMS-like CMS, and are likely to be caused by
dominant negative effects.

THERAPEUTIC FEATURES

Therapeutic agents for CMS include cholinesterase inhibitors (ChEls)
(pyridostigmine and neostigmine), B-adrenergic agents (ephedrine,
salbutamol, and albuterol), amifampridine (3,4-diaminopyridine),
quinidine, fluoxetine, and acetazolamide (Table 2) [19, 20].

ChEls block both acetylcholinesterase and butyrylcholinesterase,
and prolong the dwell time of acetylcholine released from the nerve
terminal, thereby make acetylcholine receptor open for a prolonged
time. ChEls are effective in most but not all forms of CMS. ChEls are
contraindicated for COLQ-CMS [21-23] and LAMB2-CMS [24],
because respiratory arrest may occur in some patients. Similarly,
ChEls are ineffective or worsen symptoms in patients with SCCMS,
AGRN-CMS, LRP4-CMS and MUSK-CMS [25-27]. The reason for the
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Fig. 1 Schematic of 40 genes (red letters) causing congenital myasthenic syndromes. Five representative groups of gene products that
cooperatively work at the NMJ and are compromised in CMS are explained below. First, adult AChR is comprised of «, f, 8 and € subunits
encoded by CHRNAT, CHRNB1, CHRND and CHRNE, respectively. Gene products of RAPSN, CHD8 and MACF1 make subsynaptic structural
network on which AChRs are clustered. UNC50 (UNC50) is essential for trafficking AChR. Defects in these genes cause endplate AChR
deficiency (subtype 1). Second, agrin (AGRN) released from the motor nerve terminal binds to LRP4 (LRP4) at the motor endplate, and triggers
MuSK (MUSK) phosphorylation, which is enhanced by cytoplasmic adaptor protein DOK7 (DOK?7). Defects in these genes compromise AChR
clustering (subtype 6). Third, choline generated by hydrolysis of acetylcholine by acetylcholinesterase in the synaptic space is taken up by
high-affinity choline transporter (CHT1. SLC5A7) at the motor nerve terminal. Acetylcholine is resynthesized from choline by choline acetyl
transferase (CHAT) and is incorporated into the synaptic vesicle by vesicular acetylcholine transporter (vAChT, SLC18A3). Defects in these genes
compromise recyclln% of acetylchollne (subtype 8). Fourth, the action potential that reached the motor nerve terminal opens P/Q- and N-type
calcium channels. Ca“" ions entered in the nerve terminal bind to synaptotagmin 2 (SYT2) and activate the SNARE complex comprised of
synaptobrevin/VAMP (VAMPT), SNAP25 (SNAP25), and syntaxin. Rabphilin 3a (RPH3A), a5 laminin (LAMA5), and Munc13-1 (UNC13A) are SNARE-
associated proteins that play pivotal roles in the release of the synaptic vesicles. Defects in these genes cause LEMS-like CMS (subtype 9). Fifth,
GFPT1 (GFPTT1) is the rate limiting enzyme to generate UDP-GIcNAc that is required for N- and O-linked glycosylation of glycoproteins, as well
as for making glycosaminoglycans and glycolipids. DPAGT1 (DPAGTT), ALG14 (ALG74) and ALG2 (ALG2) are enzymes in the N-glycosylation
pathway. GMPPB (GMPPB) generates GDP-mannose, a major mannosyl donor for mannose-containing polymers. Defects in these genes cause
glycosylation-deficient CMS (subtype 10)

lack of the effects of ChEls in CMS associated with defective AChR
clustering (AGRN, LRP4, MUSK and DOK?7) remains unknown.

The sympathetic nerve directly innervate the NMJ, and sym-
pathomimetics ameliorates electrophysiological and morphological
deficits of the NMJ induced by sympathectomy in a mouse model of
CMS [28]. Similarly, adrenaline, but not noradrenaline, increases the
action potential-elicited Ca®* entry into the motor nerve terminal
and increases both spontaneous and evoked acetylcholine release
[29]. The positive effect of natural agonist adrenaline is reproduced
only by B,-adranergic agonist, fenoterol, but not by a;-, a,-, or ;-
adranergic agonist [29]. In contrast to ChEls, -adrenergic agents are
effective in most forms of CMS including SCCMS and COLQ-CMS, in
which excessive openings of AChRs compromise the NMJ signal
transmission [26]. Although some patients do not respond to (-
adrenergic agents, no patients worsened with B-adrenergic agents.
Especially, B-adrenergic agents are effective for CMS associated with
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defective AChR clustering (AGRN, LRP4, MUSK and DOK7). Amifam-
pridine, a blocker of the voltage-gated potassium channel at the
nerve terminal, is another commonly used drug for CMS.
Amifampridine is also effective in many forms of CMS, but
worsening of symptoms is observed in some patients with AGRN-
CMS and DOK7-CMS [26]. Quinidine [30, 31] and fluoxetine [32]
block AChR openings and ameliorate SCCMS. A marked effect of
fluoxetine was reported in a case of COLQ-CMS [33]. Acetazolamide
was effective in two patients of SCN4A-CMS [34, 35], but was not in
another SCN4A-CMS [36].

MACF1-CMS IN THE SUBTYPE OF ‘ENDPLATE ACETYLCHOLINE
RECEPTOR DEFICIENCY’

Screening for rapsyn-dependent AChR-binding molecules
detected MACF1 (microtubule-actin cross-linking factor 1) that
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Table 1. Thirteen subtypes of CMS
CMS subtype

1 Endplate AChR deficiency

2 CMS with arthrogryposis multiplex congenita (AMC)
3 Slow- and fast-channel CMS (SCCMS and FCCMS)

4 Synaptic CMS

5 Sodium channel CMS

6 Defective AChR clustering

7 CMS caused by defective structural molecule at the NMJ
8 CMS caused by defective recycling of acetylcholine

9 Lambert-Eaton myasthenic syndrome (LEMS)-like CMS
10 Glycosylation-deficient CMS

1 CMS caused by defective nerve terminal formation

12 CMS caused by defective nuclear membrane protein
13 CMS associated with developmental disorders

Genes that are specifically introduced in this review are underlined

carries binding sites for microtubules and action [37]. MACF1 links
rapsyn to microtubule-associated proteins including end-binding
protein 1 (EB1) and microtubule-associated protein 1b (MAP1b), as
well as to actin-associated protein, vinculin [37]. MACF1 is
essential for the structural integrity, functional maturation, and
long-term maintenance of the NMJ.

In two CMS patients in Serbia and India, recessive missense
variants were identified in MACFT [37]. Both patients showed
decremental response to repetitive nerve stimulation. The Indian
patient showed late-onset fatigable limb-girdle muscle weakness
without ophthalmoparesis, and responded well to cholinesterase
inhibitors and salbutamol [37]. In 197 pedigrees with CMS in
India in another report, a patient with late-onset limb-girdle CMS
was homozygous for a missense variant in MACF1 [27].

De novo heterozygous variants in MACF1 were previously
reported in nine patients with lissencephaly 9 with complex
brainstem malformation (LIS9) (OMIM #618325) [38]. In LIS9,
heterozygous pathogenic missense or inframe variants were
observed the GAR domain, and a dominant negative effect was
speculated [38]. In contrast, in three patients with MACFI1-CMS,
homozygous or compound homozygous pathogenic variants were
observed either in the plakin domain or the spectrin repeats [27, 37].
Thus, affected domains may determine the phenotype and heredity.

Although lack of ophthalmoparesis is unusual in the subtype of
‘endplate AChR deficiency’, MACF1-CMS is classified into ‘endplate
AChR deficiency’, in which pathogenic variants are also present in
CHRNA1, CHRNB1, CHRND, CHRNE, RAPSN and CHD8 encoding
chromodomain helicase DNA-binding protein 8 (Tables 1 and 2).

TEFM-CMS IN THE SUBTYPE OF ‘CMS CAUSED BY DEFECTIVE
NERVE TERMINAL FORMATION’

TEFM (transcription elongation factor, mitochondrial) is essential
for mitochondrial DNA transcription by mitochondrial RNA
polymerase [39]. Knockout of Tefm in zebrafish showed defective
NMJ structures and defective mitochondrial transcription [40].
Especially, synaptic vesicles at the nerve terminal were markedly
decreased in Tefm-knockout zebrafish.

In seven patients in five families with mitochondrial myopathy,
eight recessive pathogenic variants were identified in TEFM [40].
Three patients showed fatigable muscle weakness, and one
patient showed decremental response to repetitive nerve
stimulation. Two patients were treated with salbutamol with
favorable responses. The other patients variably showed lactic
acidosis, epilepsy, developmental delay, and motor ataxia, which
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Genes

CHRNA1, CHRNB1, CHRND, CHRNE, RAPSN, CHD8, MACF1
CHRNAT1, CHRND, CHRNG, MUSK, RAPSN, DOK7, SLC18A3, UNC50
CHRNAT, CHRNB1, CHRND, CHRNE

COLQ, LAMB2, COL13A1

SCN4A

AGRN, LRP4, MUSK, DOK7

PLEC, DES

CHAT, SLC18A3, SLC5A7, PREPL

SYT2, SNAP25, VAMP1, UNC13A, RPH3A, LAMA5

GFPT1, DPAGTI1, ALG2, ALG14, GMPPB

MYO9A, SLC25A1, TEFM

TORT1AIP1

PURA, PTPNT1

are characteristic of mitochondrial diseases. In biopsied skeletal
muscle and primary skin fibroblasts, marked reduction of the
transcription of the H and L strands of mitochondrial DNA was
observed [40]. The protein levels of mitochondrial electron
transport complex proteins were markedly decreased, but
mitochondrial outer membrane protein TOMM20 as well as the
number of mitochondria were preserved. Another report showed
that two siblings were homozygous for a missense variant in TEFM
[27]. They showed fatigable limb and ocular muscle weakness
along with epilepsy and ataxia, and abnormal decrement on
repetitive nerve stimulation. They also showed elevated lactate
and decreased mitochondrial electron transport chain complexes |
and IV in muscle biopsy. Pathogenic variants in TEFM have not
been reported in any other diseases.

TEFM-CMS is classified into ‘CMS caused by defective nerve
terminal formation’, in which pathogenic variants are also observed
in MYO9A encoding myosin 9A and SLC25A1 encoding mitochon-
drial tricarboxylate transporter [41] (Tables 1 and 2). The gene
product of SLC25A1 shuttles citrate and malate between mitochon-
dria and cytoplasm. The nerve terminal is rich in mitochondria due
to high energy demand required for the recycling of acetylcholine
and the repeated releases of synaptic vesicles. Based on the
presence of TEFM-CMS and SLC25A1-CMS, mitochondrial CMS was
proposed [42]. Mitochondrial CMS is an attractive idea because of
the essential roles of mitochondrial energy production at the NMJ.
However, most patients with mitochondrial disease do not exhibit
defects in the NMJ signal transmission, and genetic and mechanistic
factors that affect the NMJ signal transmission remain unelucidated.
In addition, MYO9A-CMS that shows defective nerve terminal
formation fits well with SLC25A1-CMS. We thus classified MYO9A-
CMS, SLC25A1-CMS and TEFM-CMS into the subtype of ‘defective
nerve terminal formation'”.

PTPN11-CMS IN THE SUBTYPE OF ‘CMS ASSOCIATED WITH
DEVELOPMENTAL DISORDERS’

PTPN11 (protein-tyrosine phosphatase, nonreceptor type 11)
encodes SHP-2 (src homology region 2-domain phosphatase-2).
SHP-2 is a ubiquitously expressed signaling molecule especially in
the RAS/MAPK pathway, and plays essential roles in cell
proliferation, differentiation, migration, and apoptosis [43].

In four patients with Noonan/Leopard syndrome with muscle
weakness, heterozygous PTPN11 variants were observed [10].
Three showed fatigability and bulbar signs. One showed delayed
motor milestones. Two out of three who were examined for
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2Genes that are specifically introduced in this review are underlined

POMIM entries with CMS numbers are indicated

“AD autosomal dominant, AR autosomal recessive
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repetitive nerve stimulation showed decremental responses.
Pyridostigmine was effective in a patient but not in two other
patients. Salbutamol was effective in a single patient. Patients with
Noonan and Leopard syndrome show variable degrees of muscle
weakness, but the ratio of the patients exhibiting CMS symptoms
remains unclear.

Pathogenic variants in PTPN11 have been reported in Noonan
syndrome [43] and Leopard syndrome [44]. Noonan syndrome is an
autosomal dominant disorder characterized by short stature,
hypertelorism, mild mental retardation, skeletal malformation, and
congenital heart defects [45]. Sixteen causative genes have been
reported in Noonan syndrome (OMIM PS163950), and heterozygous
PTPN11 variants are responsible for ~50% of the patients. Clinical
features of Leopard syndrome are overlapping with those of
Noonan syndrome. Leopard is an acronym for Lentigines, ECG
conduction abnormalities, Ocular hypertelorism, Pulmonary steno-
sis, Abnormal genitalia, Retardation of growth, and sensorineural
Deafness [46]. Leopard syndrome is also called ‘Noonan syndrome
with multiple lentigines’. Three causative genes (PTPN11, RAF1, and
BRAF) have been reported in Leopard syndrome (OMIM PS151100),
and PTPN11 variants constitute most of them. Factors that drive the
expression of CMS phenotypes remain unknown.

PTPNT1-CMS is classified into ‘CMS associated with develop-
mental disorders’, in which pathogenic variants also are observed
in PURA encoding purine-rich element-binding protein A
(Tables 1 and 2).

DES-CMS IN THE SUBTYPE OF 'CMS CAUSED BY DEFECTIVE
STRUCTURAL MOLECULE AT THE NMJ'

Desmin encoded by DES is a muscle-specific intermediate filament
protein [47]. Desmin forms a cytoplasmic scaffold in skeletal,
cardiac, and smooth muscles.

In three unrelated patients with fatigable muscle weakness,
ptosis, and ophthalmoparesis without cardiomyopathy, a homo-
zygous intronic variant in DES (NM_001927.4: c.1023+5G > A)
was observed [27, 48]. The patients showed decremental
responses to repetitive nerve stimulation. Pyridostigmine was
effective in two patients, and salbutamol was effective in one
patient. The intronic variant caused leaky retention of complete
intron 5 of DES, and the protein levels of desmin in skeletal muscle
were reduced to 60-75% of normal. There was another report of
DES-CMS in 2016, in which two cousins with homozygous
truncating DES variants showed fatigable limb and facial muscle
weakness, ptosis, and severe ophthalmoparesis [49]. Decremental
responses to repetitive nerve stimulation were observed in both
patients. Salbutamol was effective in both patients.

Pathogenic variants in DES have been reported in desmin-
related myopathy (DRM) that is characterized by myofibrillar
degeneration with desmin-positive aggregates [50]. DRM is also
referred to as myofibrillar myopathy [51]. Heterozygous missense
variants in DES in DRD show dominant negative effects and
generate abnormal desmin aggregates [50]. Homozygous DES
variants are rare and are reported in 19 DRM patients [52]. Fifteen
patients carried truncating DES variants and four were homo-
zygous for missense variants. In all the patients, loss-of-function
mechanisms were speculated. Lack of dominant negative effect
and mild degrees of desmin reduction in patients with DES-CMS
may account for the CMS phenotype.

DES-CMS is classified into ‘CMS caused by defective structural
molecule at the NMJ, in which pathogenic variants are also
observed in PLEC encoding plectin (Tables 1 and 2).

UNC50-CMS IN THE SUBTYPE OF ‘CMS WITH
ARTHROGRYPOSIS MULTIPLEX CONGENITA (AMC)’

UNC50 (Unc-50 inner nuclear membrane RNA-binding protein) is a
transmembrane protein in the Golgi apparatus. UNC50 was

SPRINGER NATURE



K. Ohno et al.

identified by screening for a mammalian homolog of unc-50 in C.
elegans, and found to be an essential molecule for trafficking AChR
[53, 541.

In a stillborn baby with arthrogryposis multiplex congenita
(AMC), a homozygous frameshift variant was detected in UNC50
[55]. C. elegans carrying an orthologous mutant showed a marked
decrease in the surface expression of muscle AChR [55]. Similarly,
in five babies in two families, three resulted in stillbirth or neonatal
death, one pregnancy was terminated, and one baby died in early
infancy [56]. Two genetically identified babies were homozygous
for an intronic deletion in the polypyrimidine tract that activated a
cryptic 3’ splice site in UNC50 causing a frameshift. Although
electrophysiological or morphological studies of the NMJ were not
available due to early neonatal death, the babies were reported to
be a subtype of CMS [56].

AMC is a key symptom of multiple pterygium syndrome (MPS),
which is characterized by pterygia across multiple joints. MPS is
divided into the lethal variant (LMPS, OMIM #253290) and the
nonlethal variant (Escobar syndrome, OMIM #265000). Similarly,
AMC is a key feature of fetal akinesia deformation sequence
(FADS, OMIM #618388, #618389, #618393), which is characterized
by multiple deformities including pulmonary hypoplasia, cranio-
facial anomalies, and hypoplastic dermal ridges. AMC/LMPS/
Escovar/FADS are caused by reduced fetal movements. Although
more than 320 causative genes have been identified in AMC/
LMPS/Escobar/FADS, AMC/LMPS/Escobar/FADS are frequently
caused by pathogenic variants affecting the NMJ signal transmis-
sion. Escobar syndrome is exclusively caused by pathogenic
variants in CHRNG [57-60]. CHRNG encodes the fetal y subunit of
AChR, and is expressed only in embryos. Defects in AChR y subunit
affect fetal movements, but not neonatal or later movements.
Thus, Escovar syndrome is mostly benign and nonprogressive.

AMC/LMPS/FADS are also caused by pathogenic variants in
AGRN [56, 61], CHRNAT [62, 631, CHRNB1 [64-66], CHRND [62, 671,
DOK7 [68, 69], MUSK [70-73], MYO9A [74], RAPSN [62, 75, 76],
SLC18A3 [77], SLC5A7 [78] and SNAP25 [11] (Tables 1 and 2). These
genes also cause other subtypes of CMS, but pathogenic variants
in AMC/LMPS/FADS are more deleterious than those in the other
subtypes of CMS.

CONCLUSIONS

CMS are caused by pathogenic germline variants in 40 genes, which
are classified into 13 subtypes according to clinical, mechanical, and
therapeutic features. Concomitant recognition of myasthenic
features in other mostly severer diseases facilitated the identifica-
tion of novel genes in recent years. Prevalences of CMS in total
population and under 18 years of age are 2.2 and 9.7 per million,
respectively. Five forms of CMS (SCCMS, PURA-CMS, PTPN11-CMS,
SNAP25-CMS and SYT2-CMS) are caused by autosomal dominant
variant, and the others are by autosomal recessive variants.
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