Fig. 1: The properties of HGF/U-Ms and VEGF/U-Ms are maintained on stent material. | Experimental & Molecular Medicine

Fig. 1: The properties of HGF/U-Ms and VEGF/U-Ms are maintained on stent material.

From: Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model

Fig. 1

a Schematic illustration of the experiment using the stent with HGF/U-Ms and VEGF/U-Ms to secrete the angiogenic factors in an inducible manner. The stents were coated with polydopamine, fibronectin, and extracellular matrix (ECM), followed by in vitro and in vivo swine experiments. b Human U-Ms secreting HGF and VEGF were seeded onto the pre-coated material sheets to confirm cell viability on the stent material. The cells stained with green fluorescent dye were detected using fluorescence microscopy. U-M human UCB-MSCs, Ctl control. N = 3. c The cells were counted at 7 days post seeding after detachment from the stent material and staining of dying cells using trypan blue (**denotes a p-value < 0.01). d Cell viability was analyzed using a crystal violet assay on the stent 7 days post seeding (** denotes a p-value < 0.01). d, e HGF and VEGF secretion were detected in conditioned media using western blotting. HGF/U-Ms and VEGF/U-Ms were treated with 5 µg of doxycycline for two days in a six-well plate. f MSC markers on the stent material were not altered, even in the HGF- and VEGF-secreting cells. Lane 1: U-Ms, 2: U-Ms + Dox, 3: U-Ms + Dox on material, 4: HGF/U-Ms + Dox on material, 5: HGF + VEGF/U-Ms + Dox on material. N = 3 experiments per group

Back to article page