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The fluctuating nature of disease activity in systemic lupus erythematosus (SLE), alternating between flares and remissions, poses
substantial challenges for its effective management. The use of current biomarkers for monitoring SLE is limited in clinical settings
owing to insufficient comprehension of the complex immune involvement underlying the disease course. Here, therefore, we
profiled peripheral blood mononuclear cells at both stable and exacerbation states (total of n = 19) from six patients with SLE and
32 healthy donors using integrated single-cell RNA and T cell receptor (TCR) sequencing. To validate our findings, we analyzed two
independent external datasets: bulk RNA sequencing and TCR data from 79 controls and 62 patients with SLE and single-cell RNA
sequencing data from 99 healthy controls and 162 patients with SLE. Our analysis revealed cell type-specific activation of
interferon-related genes in SLE grouped into four clusters, with elevated activity in disease-associated immune cells. Among these,
atypical B cells associated with autoantibody production exhibited distinct differentiation patterns compared with conventional
memory B cells, driven by heightened interferon signaling in SLE. Notably, clonal expansion of effector CD8 T cells emerged as a key
driver of disease exacerbation, as indicated by reduced TCR diversity. Specific CD8 T cell clonotypes expanded during flare states,
transitioning to effector phenotypes that exhibited heightened cytotoxicity and amplified interferon signaling, strongly correlating
with tissue damage and flare severity. Our findings establish a critical link between interferon-driven mechanisms and cytotoxic T

cell dysfunction in SLE flares, offering potential targets for therapeutic intervention and predictive biomarkers.

Experimental & Molecular Medicine (2025) 57:1700-1710; https://doi.org/10.1038/s12276-025-01504-2

INTRODUCTION

Systemic lupus erythematosus (SLE) is a paradigmatic example of
a systemic autoimmune disease involving a diverse array of
immune cells in its pathogenesis. Its clinical manifestations range
from mild skin rash and arthritis to severe, life-threatening organ
complications. The variable nature of SLE, with sporadic flares and
remissions, reflects deep heterogeneity at the cellular and
molecular levels, influenced by patient-specific genetic and
molecular differences’. The primary goals in SLE management
are to reduce disease activity, prevent organ damage and improve
quality of life?. However, clinical heterogeneity in pathophysiolo-
gical presentations complicates treatment as responses can vary
substantially among patients. Given the variability of SLE, a
personalized approach based on patient stratification is essential
for effective disease management®.

Profiling peripheral blood mononuclear cells (PBMCs) provides a
potent, noninvasive tool for understanding the altered signaling
pathways of the multiple immune cell types involved in the
pathogenesis of disease. The analysis of gene expression profiles
in bulk immune cells from patients with SLE reveals distinct
phenotypic traits of their subsets*®, potentially enhancing patient
stratification and consequently improving clinical outcomes with
better treatment options®’. However, approaches that analyze
heterogeneous immune cells en masse as a pooled population
may not fully capture the complete immune landscape of SLE,
potentially overlooking critical populations that are essential for
understanding the disease pathophysiology.

Here, to address this limitation, single-cell RNA sequencing
(scRNA-seq) was employed to profile individual PBMCs in patients
with SLE®™'". The analysis of immune cell heterogeneity within
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and among patients with SLE revealed several key findings: (1) the
identification of >20 distinct cell subsets actively involved in
disease pathogenesis, (2) global and cell type-specific expression
of interferon gene signatures across various immune cells and (3)
differences in certain cellular compositions in comparison to
controls, such as a decrease in naive CD4 T cells and an increase in
repertoire-restricted CD8 T cells. Notably, Perez et al. proposed
that cell type-specific expression patterns precisely predict
case—control status and enable the stratification of patients into
molecular subtypes''. Furthermore, multiple studies have sug-
gested the potential roles of specific cell components in SLE
pathogenesis, such as double negative switched memory B cell
(CD27 IgD CXCR5 CD11c*DN2 cells) and atypical B cell (ABC)
populations (CD11c™TBX217)%'°7 "2, These studies also demon-
strated that a subset of CD8 T cells, such as CD8 effector/memory
T cells with elevated expression levels of cytotoxic genes, undergo
clonal expansion and may have a substantial influence on disease
progression.

Despite these valuable insights from scRNA-seq studies, the
fluctuation of immune cell states during flare-ups and remission
remains underexplored. Given the variability in immune responses
among patients with SLE, long-term immune monitoring is
essential for understanding pathophysiological dynamics, the
early detection of flares and personalized refinement of treatment
regimens. Accordingly, this study aims not only to investigate the
contrasting cellular and molecular profiles of patients with SLE
against those of controls, but also to track their changes
throughout the disease course by analyzing longitudinal PBMC
scRNA-seq data. Furthermore, we integrate immune repertoire
profiling with gene expression profiles to explore the crucial role
of autoantigen immune responses in SLE pathogenesis. This
combination could enhance our understanding of antigen-specific
immune cell dynamics, offering insights into the underlying
mechanisms of SLE flare-ups.

MATERIALS AND METHODS

Study design

This study enrolled six patients who were diagnosed with SLE at Hanyang
University Hospital for Rheumatic Diseases. These patients were >18 years
old and met either the 2012 Systemic Lupus International Collaborating
Clinics classification criteria or the 2019 European League Against
Rheumatism/American College of Rheumatology classification criteria'>'*,
Each patient experienced at least one flare state with an increased Systemic
Lupus Erythematosus Disease Activity (SLEDAI) score during the disease
course'. A flare was defined as an increase in Physician Global Assessment
by >1.0 and treatment intensification. Two of the six patients experienced
two states of flares followed by remission. All individuals initially presented
with lupus nephritis in conjunction with a lupus flare-up. Clinical data were
collected both before and immediately after the flare. Before experiencing a
flare, all patients were prescribed an oral immunosuppressant, such as
mycophenolate mofetil, or a calcineurin inhibitor, either alone or combined
with low-dose corticosteroids. Additionally, we included 32 Korean
participants as controls from the Asian Immune Diversity Atlas, which is a
part of the Human Cell Atlas-Asia'®.

Sample preparation and library construction

Blood samples were collected from our cohort and PBMCs were isolated
and cryopreserved. Frozen cells were then resuspended in a 1x PBS
solution and filtered through a 40 um filter. A small portion of the cell
solution was mixed with acridine orange and propidium iodide (AO/PI) and
placed on a cell-counting slide to assess viability using the LUNA-FL
automated fluorescence cell counter. Cells with a viability greater than
70% were used for sequencing.

We utilized the Chromium Next GEM Single Cell 5 kit v2 and the
Chromium Next GEM Chip K Single Cell kit to generate a barcoded 5’
single-cell library (10X Genomics Chromium). Each cDNA library that
passed quality control (on an Agilent Bioanalyzer) was sequenced on an
lllumina NovaSeq6000 or NextSeq500. Immune repertoire sequencing was
performed using cDNA synthesized through the nested-PCR enrichment
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method. T cell receptor (TCR) libraries were generated using the Chromium
Single Cell Human TCR Amplification kit (10X Genomics). Before
sequencing, each library underwent a quality control assessment on an
Agilent Bioanalyzer.

Flow cytometry and cell sorting
PBMCs were incubated with fluorochrome-conjugated antibodies at 4 °C
for 20 min to label surface markers. Viability staining was performed using
the Live/Dead Cell Stain kit (Invitrogen, L34972) to exclude dead cells. Flow
cytometry was carried out on an LSR Il instrument (BD Biosciences), and
the analysis was conducted with FlowJo software v10.10 (Treestar).
Antibody clones and their experimental suitability were validated through
prepurchase review of flow cytometry plots and peer-reviewed literature
citations. Serial dilution titrations of each antibody were performed on
PBMCs to determine the optimal staining concentrations and validate that
observed cell population proportions aligned with published references.
The following directly conjugated antibodies were used to identify cell
markers of human CD8 T cells (clone, manufacturer): mouse anti-human
CD4-BV510 (SK3, BD Biosciences), mouse anti-human CD3-BV605 (UCHT1,
BD Biosciences), mouse anti-human CD8-FITC (RPA-T8, BD Biosciences),
mouse anti-human CCR7-PerCP-Cy5.5 (150503, BD Biosciences), mouse
anti-human CD14-PE-TR (61D3, eBioscience), mouse anti-human CD19-PE-
TR (HIB19, eBioscience) and mouse anti-human CD45RA-APC/Cyanine7
(HI100, Biolegend).

External data sources included in the study

To consolidate our findings, we adopted two independent external
datasets. First, bulk RNA and TCR sequencing data from 28 immune cell
types, including those from 79 healthy controls and 62 patients with SLE,
were obtained from the National Bioscience Database Center (NBDC)
Human Database (accession number E-GEAD-397)'". Matched TCR
sequencing data and disease activity information for bulk RNA-seq data
were provided with the approval of the Ethical Committee of The
University of Tokyo. When immune cell subsets belonged to broader
categories, expression levels were averaged across these subsets. Second,
PBMC scRNA-seq data from 99 healthy controls and 162 patients with SLE
(GSE174188)"" were included in the analysis. These data were integrated,
processed using a pipeline consistent with that applied to our study
samples. 10 immune cell types were annotated based on markers
identified in the original study and those determined through our
analyses, ensuring consistency for cross-study comparisons.

scRNA-seq data quality control and preprocessing

scRNA-seq data were processed using Cell Ranger (v6.0.0)'® to align against
the GRCh38 human reference genome provided by 10X Genomics. This step
involved identifying and counting unique molecular identifiers (UMIs) and
filtering cells to ensure data integrity. The reference genome utilized was
obtained from 10X Genomics (Human reference GRCh38 (ref. '%)).

We utilized Seurat (v4.1.1)?° in R (v4.1.1.) to select cells with more than
500 genes and <5% mitochondrial gene content and platelet with marker
gene expression (PPBP, PF4 and NRGN). Additionally, Rscrublet (v0.1.0, R
port of scrublet?') was utilized to remove the doublet, and any potential
doublet was manually removed based on marker expression. After cell
filtering and expression normalization, a total of 155,923 cells remained in
the final dataset.

During the variable feature extraction step for dimensional reduction,
we excluded blacklisted genes to prevent undesired influence. These
included the following: (1) variable genes of a/f TCR sequences, (2)
variable genes of immunoglobulin sequences, (3) ribosomal protein genes,
(4) mitochondrial genes and (5) dissociation stress signature geneszz. After
performing principal component analysis, the potential batch effect
caused by sample difference was corrected using harmony (v0.1.0) to
eliminate technical discrepancies between samples®*. Subsequently, Uni-
form Manifold Approximation and Projection (UMAP) and clustering were
performed on the harmony space to facilitate embedding and clustering,
thereby establishing a solid foundation for robust downstream analyses.

Cell type identification

The marker genes for clusters were identified by comparing differently
expressed genes between clusters and the most abundantly expressed
genes for each cluster with known markers for each cell type. These cell
types were validated using reference studies?* 2. Subsequently, each
subtype within the main cell type was distinguished by extracting and
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reclustering the global cell types. Cells annotated as ‘cycling’ were then
divided among each lymphoid cell subtype (CD4 T, CD8 T and natural killer
(NK)) through higher-resolution clustering based on the same marker
genes associated with each lymphoid cell subtypes. Additionally, distinct y/
& TCR sequence gene expression was used for y& T cells (gdT). Details of
the marker gene list are described in Supplementary Table 2.

To validate the identified cell types at both global and subtype levels, an
automated annotation from the reference-based mapping tool Azimuth
(v0.4.6) was employed®. A PBMC dataset containing 161,764 cells,
produced from the same study®’, was applied as a reference. Cells were
assigned to a specific cell type that exhibited the highest probability based
on gene expression profiles from the reference. The agreement rate for the
assigned cell type was quantified by the proportion of our annotated cells
that corresponded to similar cell types in the reference dataset.

Differential expression analysis
Differential expression analysis among cell types in scRNA-seq data was
performed using the FindMarkers function in Seurat, utilizing the model-
based analysis of single-cell transcriptomics method. The genes with fold
change >1.25 and adjusted P value<10°® by Benjamini-Hochberg
correction were considered as being significantly differentially expressed.
The gene sets were generated from curated collections in MSigDB*” and
Gene Ontology. Gene set scores in scRNA-seq data were calculated by
determining the average expression levels of aggregated gene sets using
the AddModuleScore function in the Seurat package, with scores
normalized using z-score transformation. For bulk RNA-seq data, gene
set scores were computed using Gene set variation analysis (GSVA,
v1.42.0)%%, followed by z-score normalization. Further details regarding the
gene set can be found in Supplementary Table 3.

Cell differentiation trajectory inference

Cellular trajectories of differentiation for B cells and CD8 T cells were
inferred using monocle3 (v1.0.0/*° on UMAP embedding. In this analysis,
we excluded plasma cells from B cells and cycling CD8 T cells owing to the
distinct gene expression signature compared with other subtypes. The root
node was specified within clusters of naive subtypes (naive B and CD8
T cells) based on the concept of immune cell transition. Pseudotime was
calculated based on this cell ordering.

Regulon network analysis

To examine the regulon network via transcription factor (TF) activity, we
utilized SCENIC (v1.3.1)*® and pySCENIC. This approach analyzes the co-
expression of TFs and their putative target genes. We started with a raw
count matrix to construct the co-expression network, denoising on genes
expressed in more than 1% of the total cells. For the enrichment analysis of
gene signatures, we employed motifs from the cisTarget Human motif
database v10 (ref. 3'). The regulon activity for each cell was determined by
calculating the average normalized expression of the putative target genes.

Cell-cell communication analysis

Intercellular communication was explored using CellChat (v1.6.1)%2. This
approach enables the inference of cellular interactions by mapping
potential ligand-receptor pairs across different cell types. Interactions were
determined based on the expression of ligand genes in one cell type and
receptor genes in other cell types, with the strength of interaction
weighted by communication probability. This analysis provides insights
into the intricate signaling networks within the cellular environment.

Single-cell TCR sequencing data processing and clonotype
analysis

TCR sequencing data were processed with Cell Ranger (v6.0.0)'® for
mapping TCR reads against the V(D)) reference genome, counting UMIs
and cell filtering, as provided by 10X Genomics. A reference genome was
obtained from the cell ranger pipeline (Human V(D)) reference GRCh38
(ref. 33)). To assign TCR chain CDR3 sequences to the corresponding cells
within the scRNA-seq dataset, we usedscRepertoire (v1.5.2)**. During this
step, the following filtering criteria were applied to minimize noise: (1) only
high-confidence sequences were retained, (2) if a cell had more than one
chain of the same type, only the chain with the highest UMI count was
retained, (3) only cells with paired alpha and beta chain sequences were
retained and (4) cells with the same V,D,J genes in both chains were
assigned to the same clonotype.

SPRINGER NATURE

To evaluate T cell expansion, we measured TCR clonotype diversity using
Shannon’s entropy index. The similarity between TCR clonotypes in each
group was measured using the Morisita—Horn similarity index. Significantly
expanded clonotypes during flare states were identified by comparing
clonotype sizes (that is, the number of cells per clonotype) between pre-
flare and flare states. Clonotypes exhibiting at least a twofold increase in
size during flare or clonotypes absent at baseline but present during flare
state were classified as expanded. To minimize spurious signals, only
clonotypes showing proportional expansion and represented by >3 cells
during the flare state were included in the analysis.

Statistical analysis

All values are presented as the means + s.d. No statistical method was used
to predetermine the sample size. Adjusted P values were reported to
correct for multiple testing via the Benjamini-Hochberg procedure,
ensuring control over false discovery rates. Statistical significance was
defined as a P value <0.05 for all tests. All the statistical analyses were
performed using R statistical software.

RESULTS

Profiling the immune cell landscape in SLE

To dissect the multicellular ecosystem of SLE and understand the
development of disease progression, we employed scRNA-seq on
PBMCs from 32 healthy controls and 19 samples from six patients
with SLE (at different time points throughout the disease course),
four of whom have experienced at least one cycle of flare and
remission (Fig. 1a). SLEDAI scores ranged from 4 to 14 before flare-
up and increased from 9 to 19 during flare states (Supplementary
Fig. 1 and Supplementary Table 1). All patients demonstrated
renal involvement, evidenced by increased proteinuria or
decreased estimated glomerular filtration rate (eGFR), along with
the presence of anti-double-stranded DNA (dsDNA). Furthermore,
we observed significant correlations between the SLEDAI score
and anti-dsDNA titer, as well as proteinuria (Supplementary Fig.
1a). Additionally, clinical data indicated elevated proteinuria levels
during flare states compared with pre-flare states (Supplementary
Fig. 1b).

Overall, we analyzed 153,483 cells after filtering out putative
doublets and poor-quality cells. Integrating gene expression
profiles across samples and unsupervised clustering of cells with
canonical marker inspection enabled us to identify 11 major cell
types. These cell types were visualized in a UMAP space: CD4* T
cells (CD4 T), CD8" T cells (CD8 T), NK cells (NK), gdT, B cells (B),
plasma cells (PC), classical monocytes (cM), nonclassical mono-
cytes (ncM), conventional dendritic cells (cDC) and plasmacytoid
dendritic cells (pDC) (Fig. 1b,c and Supplementary Table 2). Our
assigned cell types demonstrated a significant level of concor-
dance with the automated annotation result from the reference-
based mapping tool Azimuth®® (88.78+21.36% and
68.34 + 27.40%, mean * s.d. of agreement rates for the cell types
with the matched label at a global and subtype level, respectively)
(Supplementary Fig. 2).

We observed a significant difference in the composition of cell
types between SLE and controls. The SLE samples showed a marked
decrease in CD4 T cells, monocytes, cDCs and pDCs, alongside a
pronounced increase in CD8 T and B cells (Fig. 1d and
Supplementary Fig. 3), which was confirmed by external scRNA-
seq data (Supplementary Fig. 4)'". In addition, consistent with
previous findings>>>¢, a significant decrease in the CD4 to CD8 T cell
ratio in the SLE samples was observed (Supplementary Fig. 3d).

Comprehensive analysis of IFN-stimulated genes in SLE

To understand the molecular signatures enriched in SLE in
comparison with controls, we performed differential expression
analysis on aggregated cells overall. Expectedly, we detected type
I IFN signaling-related genes (such as IFITM1, ISG15 and IFI27) with
higher expression levels in SLE (Supplementary Fig. 5a). We
yielded concordant results on gene set enrichment analysis,
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Fig. 1

Characterization of the immune landscape in SLE. a A schematic of the single-cell transcriptome with TCR sequence profiling of

immune cells in PBMCs from healthy controls (CTL) and patients with SLE. b UMAP visualization of immune cell types. ¢ Scaled average
expression of marker genes across ten immune cell types, with the dot size indicating the proportion of expressing cells and the color
gradient indicating expression levels. d A bar plot showing the cell type proportions by disease state (left) and the total number of immune
cells (right). The lines on the bar indicate the interquartile range (IQR), spanning from the 25th percentile (Q1) to the 75th percentile (Q3).
Statistically significant increases are marked with orange stars for SLE and green for CTL. e A heat map of 100 IFN-related genes across
different cell types across three different studies. log, fold changes are shown, with genes significantly overexpressed in SLE marked in red
(right). f,g A comparison of the IFN C2 score in CD8 T cells (f) and the IFN C3 score in cM (g) across controls and patients with SLE. The box
plots show the distribution of IFN scores from three different studies (left). The box represents the IQR, spanning from Q1 to Q3, with the line
inside the box indicating the median. The whiskers extend to the smallest and largest values within 1.5 times the IQR. UMAP visualization of
IFN scores across immune cells (right). The color gradient indicates low to high scores. **P < 0.01, ***P < 0.001 and ****P < 0.0001.

showing enriched IFN-related signaling pathways in SLE (Supple-
mentary Fig. 5b), consistent with previous studies demonstrating
elevated activity of IFN signaling pathways in SLE
pathophysiology®’~%,

To explicitly probe the IFN module in a cell type-specific
manner, we further investigated the previously reported 100 IFN-
related genes (Supplementary Tables 3 and 4)'°. We classified
them using K-means clustering and determined K=4 was the
optimal number of clusters based on the silhouette score
(Supplementary Fig. 6a,b) and its shared expression pattern within
specific cell types (Supplementary Fig. 6¢), not only in our scRNA-
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seq data but also in two independent external datasets of cell
type-sorted bulk RNA-seq'” and scRNA-seq'' data, respectively
(Fig. 1e, Supplementary Fig. 6d and Supplementary Table 5).
Cluster C1 exhibited upregulation across most immune cell types,
including a broad range of IFN-stimulated genes (IFI44, IFI16, IFI35
and /SG15) and IFN-related signaling pathways such as the JAK/
STAT pathway (STATT and [RF9)*°. Cluster C2 was related to
antigen-receptor signaling in lymphocytes (IFITM1, SP100, 1SG20
and TAP1)***" and chemokine regulation involved in the
recruitment and activation of lymphocytes (CCL4, CCL5 and
50Cs1)*, and showed enhanced expression predominantly in
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orange stars for SLE and green for CTL. d Violin plots showing the distribution of IFN C1 cluster scores in B cell subtypes for controls (CTL) and
patients with SLE in two studies: Perez et al."" (left) and our study (right). The lines within the violin indicate the IQR, spanning from Q1 to Q3.
e The ratio of ABC to B mem within total B cells, categorized by disease. The box represents the IQR, spanning from Q1 to Q3, with the line
inside the box indicating the median. The whiskers extend to the smallest and largest values within 1.5 times the IQR. f A UMAP plot
illustrating the inferred differentiation trajectory of non-plasma B cells, with color-coding from early (blue) to late (red) stages (left). UMAP
plots for subtypes and TBX21 expression levels (right). The color gradient indicates the expression level. g The regulon specificity score (RSS) of
TFs in ABC. TFs are sorted by RSS rank and ABC-specific TFs, appearing exclusively in the top 30 for ABCs, are highlighted in red. h TF activity
changes across pseudotime for B cell subtypes in B naive to ABC (left) and B naive to B mem (right). The color gradient represents the
progression through pseudotime, with the lines indicating the trend of TF activity. i Violin plots of STAT1 expression and TF activity in non-
plasma B cell subtypes. Lines within the violin indicate the IQR, spanning from Q1 to Q3. ***P < 0.001 and ****P < 0.0001.

lymphocytes. Particularly, we observed significantly higher cluster increase of plasma cells and plasmablasts, both of which function
C2 module scores in CD8 T cells of SLE in all three independent as antibody-secreting cells, in SLE (Fig. 2c), consistent with earlier

datasets (Fig. 1f). Next, cluster C3 included genes associated with  findings'%?.

IFN stimulation (IFI6, OAS3 and the IFIT family) and cytokine Of note, we identified ABCs that expressed TBX21 (T-bet) and
production by myeloid cells (CXCL10, SERPING1, TNFSF10 and ITGAX (CD11c) with reduced CXCR5 expression (Fig. 2b). While
CASP1T)* with upregulated expression in monocytes and cDCs. memory B cells typically represent a more controlled immune
Significant augmented cluster C3 module scores in cM cells of SLE response, ABCs are often associated with increased autoantibody
were identified in all three independent datasets (Fig. 1g). Notably, production and disease activity in autoimmune conditions*®*°, To

cluster C4 was upregulated in pDCs with genes that are associated determine the dysregulated status of B cell-mediated immune
with type | IFN production (IRF7, IRF8 and BST2)****. These  responses, we assessed IFN module activity using IFN C1 cluster
classifications demonstrated high functional concordance with genes, which were globally elevated across all cell types in
two previous modular approaches'®*® (Fig. 1e and Supplementary association with IFN-related signaling pathways such as the JAK/
Fig. 6e). STAT pathway (Fig. 1e). We observed that ABCs exhibited the most

pronounced IFN module scores among B cell subtypes (Fig. 2d),
Identification of B lymphocyte subtypes with enhanced type | suggesting that the aberrant behavior of ABCs may be driven by

IFN responses the heightened IFN stimulation characteristic of SLE.

To better understand B cell-mediated immune responses and their We next asked how the functional balance between auto-
skewed functions in SLE, we first reclustered B cells into five reactive and regulated immune responses was distorted in SLE.
subpopulations (Fig. 2a) based on established marker genes (Fig. The ratio of ABCs to memory B cells was prominently elevated in
2b). Subcellular compositional analysis showed a substantial SLE across both scRNA-seq datasets (Fig. 2e and Supplementary
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Fig. 7), implying that SLE may enhance the transition of B cells
toward antibody-secreting cells through unconventional differ-
entiation pathways. To further explore how B cells are differ-
entiated into these two functionally distinct subsets, we
reconstructed the differentiation trajectory by inferring cell orders
based on similarities of their expression patterns®°. Although ABCs
and memory B cells both originated from naive B cells, their
differentiation paths bifurcated with distinct gene expression
patterns (Fig. 2b, f). The downregulation of CXCR5, a key receptor
for follicle homing, in ABCs supported the notion that ABCs
mature in extrafollicular regions, whereas conventional B cells
mature within the germinal centers of follicular regions®®. These
two distinct fates were further highlighted by TF analysis. ABCs
exhibited activation of TFs such as TBX21, SOX5, NFATC2 and BATF
(Fig. 2g), and notably their activities increased with differentiation
(Fig. 2h). In contrast, other TFs such as TCF7, which regulate
memory B cell differentiation, were not activated during ABC
differentiation (Fig. 2h), indicating distinct regulatory pathways for
these subtypes. Additionally, the gene expression and TF activity
of STAT1 elevated by IFN stimulation are significantly higher in
ABCs from patients with SLE (Fig. 2i). These changes in TFs,
including STAT1 activity, along the ABC differentiation trajectory
were supported by an external SLE scRNA-seq dataset (Supple-
mentary Fig. 7).

Altered behavior of T lymphocytes in SLE pathogenesis

To explore alterations in the phenotype, functional state and
clonality of T cells in SLE, we further dissected CD4 and CD8 T cells
using established marker genes (Fig. 3a,b). The overall proportion
of CD4 T cells decreased in SLE (Fig. 3¢c). However, the abundance
of CD4 regulatory T cells (T,g) was notably enriched in SLE, albeit
with downregulation of CTLA4 and IL2RA (Supplementary Fig. 8a),
implying that their suppressive functionality may be impaired.
Consistent with this was the attenuated activity levels of IL-2 and
TGF-B signaling pathways in CD4 T4 cells of SLE (Supplementary
Fig. 8b), affording a diminished capacity to maintain immune
tolerance. Together, these data strongly suggest that the
dysfunction of CD4 T4 cells may contribute to the severity of
inflammation and autoimmunity in SLE, leading to a less
controlled and more aggressive disease course. Moreover, we
observed heightened cytotoxic activity of CD4 cytotoxic T cells in
SLE (Supplementary Fig. 8c,d), which could exacerbate inflamma-
tory responses and tissue damage, leading to more severe disease
manifestations.

To further understand how T cell-mediated cytotoxicity is
dysregulated in SLE, we next investigated the CD8 T cell
compartment. In contrast to CD4 T cells, the overall proportional
abundance of CD8 T cell subsets was increased, particularly in
naive and effector memory T (Tem) cells (Fig. 3c). As expected,
gene set activity measurements for the canonical CD8 Tem
functions (TCR signaling and T cell cytotoxicity) indicated
enhanced engagement in immune responses in SLE, confirmed
by two independent external datasets (Fig. 3d). In line with this
observation, CD8 Tem cells were also specified in clonally
expanded clonotypes in SLE (Fig. 3e and Supplementary Fig. 8e)
with their lower TCR diversity (Fig. 3f) indicating that the selected
T cell clones were repeatedly activated, probably in an auto-
immune response with augmented cytotoxic activity. This was
consistently observed in an external dataset (Fig. 3f). Moreover,
CD4 cytotoxic T cells, which are commensurate with cytotoxic
function, showed the selective expansion of CD8 Tem cells with
decreased TCR diversity in SLE (Fig. 3e and Supplementary Fig.
8e,f). Together, our data indicated that the clonal expansion of
cytotoxic T cells, probably targeting autoantigens, could con-
tribute to the persistent inflammation and chronic tissue damage
in SLE, thereby exacerbating disease severity.

To activate CD8 T cells in response to and to communicate with
other cells, MHC-l signaling is essential to recognize and eliminate
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abnormal cells by presenting antigens. Galectin signaling helps
regulate their functions, facilitating effective interactions with
other immune cells and enhancing coordinated immune
responses. To better understand how cellular behaviors of CD8
T cells and their interplay with other cells become altered in SLE,
we analyzed cell-cell communication networks across CD8 T cell
subtypes using a ligand-receptor interaction knowledgebase®2. In
SLE, CD8 Tem cells exhibited relatively stronger interactions with
cM via MHC-l signaling and with pDC via Galectin signaling (Fig.
3g). More specifically, MHC-l signaling was prominent in
ligand-receptor interactions of HLA class | molecules with CD8A,
CD8B and KLRK1, while Galectin signaling was primarily mediated
between LGALS9 (a biomarker in SLE pathogenesisso) and CD45
(Fig. 3h). Together, our analysis highlighted the critical impacts of
dysregulated CD8 T cells with their aberrant molecular and cellular
behaviors in shaping disease outcomes.

Expansion of clonally restricted cytotoxic CD8 T cell during
SLE flare states

The hyperactivation of clonally active CD8 T cells in SLE drives
inflammation. This exacerbates disease symptoms and results in
more severe and unpredictable flares®'. To capture the functional
changes in CD8 T cells over the course of disease progression, we
collected and analyzed before-flare (BF) and on-flare (FL) states
(total, n =12) (Fig. 4a and Supplementary Table 1). The flare state
showed a significant increase in the SLEDAI score compared with
the baseline pre-flare state, along with a concomitant rise in
proteinuria (Supplementary Fig. 1b) and elevated expression of
cytotoxic genes (Supplementary Fig. 9a), underscoring the
systemic inflammatory burden during flares>2.

We identified CD8 T cell subtypes across BF and FL samples (Fig.
4b). As expected, CD8 Tem cells were strongly associated with the
flare state. This increase was also confirmed by flow cytometry,
indicating a consistent expansion during flares (Fig. 4c and
Supplementary Fig. 10). This observation aligns with the analysis
of CD8 T cell differentiation trajectory, showing that the more
differentiated cells, CD8 Tem, were more prevalent during flares
and exhibited a higher level of cytotoxicity (Supplementary Fig.
9b,c). To further characterize CD8 Tem cells in terms of their IFN-
related response during flare states, we estimated the gene set
activity of IFN C2 cluster genes, which were relevant to
lymphocytes and more responsive to shifts in disease activity
(Fig. 1e). Intensified IFN activity was found in flares relative to pre-
flare states (Fig. 4d). Moreover, we could derive a consistent trend
of increased IFN activity in patients with higher SLEDAI scores
from an independent dataset (Fig. 4d)'’, indicating that heigh-
tened IFN activity in CD8 Tem cells contributes to exacerbating
inflammation and worsening disease activity during flares.

To understand further how the immune system adapts and
evolves during flares, we sought to identify which CD8 T cell
clones actively expand as the disease progresses. To achieve this,
we analyzed TCR sequences in CD8 T cells and tracked their
clonotypes throughout the flare states. The overall reduction in
TCR diversity, coupled with a decrease in unique clonotypes and
an expanded proportion of the top ten enriched clonotypes, was
observed during flares (Fig. 4e and Supplementary Fig. 11a). This
shift indicates a diminished range of antigens that CD8 T cells
recognize and respond to, highlighting more targeted but
potentially more aggressive autoimmune activity during flares.

We next tracked specific clones that expanded during flare
states. Certain clonotypes exhibited more than a twofold
expansion during flares compared with pre-flare states (Fig. 4f
and Supplementary Fig. 11b). These clonotypes, which were
predominantly naive cells before flare onset, transitioned to
effector phenotypes during flares (Fig. 4g). Additionally, the
proportion of large clonotypes significantly increased during
flares, reflecting greater clonal dominance within the CD8 T cell
repertoire (Fig. 4h). Notably, these flare-expanded clonotypes
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demonstrated elevated expression of cytotoxicity-related genes
and heightened activity of IFN C2 cluster genes relative to other
clonotypes, with both metrics significantly increased from pre-
flare levels (Fig. 4i). These findings suggest that flare-expanded
clonotypes play a central role in mediating immune responses
during flares and are strongly associated with disease exacerba-
tion. Furthermore, we evaluated the similarity of CD8 TCR
clonotypes across patients and flare states to investigate potential
correlations with autoantibody responses. While TCR clonotypes
varied between patients, individual patients showed consistent
clonotype profiles across flare states, with greater similarity
observed in CD8 Tem compared with CD8 naive T cells (Fig. 4j).

DISCUSSION

In this study, we utilized high-resolution scRNA-seq of serial
PBMCs from patients with SLE to provide novel insights into the
immune dysregulation and dynamic interactions between
immune cells during longitudinal monitoring. Our findings
reaffirmed previously reported alterations in cellular composition
in SLE, including a decrease in CD4 T cells and an increase in CD8
T cells and B cells"®"". We further confirmed the pronounced type
I IFN signatures in multiple cell clusters. Additionally, by analyzing
IFN modules in a cell type-specific manner, we stratified patients
with SLE into four distinct molecular subtypes, not only in our
scRNA-seq data but also in two independent external datasets'""”.
Notably, M5.12 module*®, which correlates strongly with renal
flares and overall disease activity in ref. *°, was predominantly
overlapped with our cluster C2, which is enriched in CD8 T
lymphocytes. This suggests that C2 cluster genes in CD8 T cells
appear to be more sensitive to changes in disease activity and
may serve as a more precise marker for tracking disease
progression and flare-ups, a hypothesis that requires further
validation in future studies.

In particular, we revealed a significant increase of ABCs with the
most pronounced IFN C1 cluster module scores among B cell
subtypes. The ratio of ABCs to memory B cells with differential TF
activity was also prominently elevated in our data as well as in
previous scRNA-seq data'', underscoring their potential roles in
SLE pathogenesis by promoting cell proliferation and differentia-
tion into plasma cells. This might also imply a reduced BCR
signaling threshold, potentially elevating autoantibody produc-
tion®>. Moreover, we observed increased gene expression and TF
activity of STAT1 in ABCs. This may reflect an upregulated IFN
response, as previously reported in patients with SLE>**>,
However, STAT1 is not merely a downstream mediator; it also
plays an active role in propagating immune responses through
the induction of IFN-stimulated genes and formation of feed-
forward loops>°. In support of this, functional studies have shown
that STAT1 phosphorylation at a specific site is essential for the
development of lupus-like autoimmunity in murine models®’,
supporting its potential pathogenic role. Therefore, the increased
STAT1 activity we observed may be both a consequence of IFN
signaling and a driver of sustained autoimmune activation.
Clarifying this relationship will require further experimental studies
using lupus-prone animal models with B cell-specific manipulation
of STAT1. Furthermore, given that STAT1 is activated downstream
of JAK kinases, our observation of enhanced STAT1 activity in ABCs
supports the rationale for JAK inhibition as a potential therapeutic
strategy in SLE. By suppressing this pathway, JAK inhibitors may
help reduce ABC-driven immune activation and inflammation
during disease flares.

T cells are pivotal drivers in SLE pathogenesis. They modulate B
cell responses, influencing autoantibody production and initiating
inflammation. Consequently, their infiltration into target tissues
leads to chronic tissue damage®®. Dysregulated T cell signaling
exacerbates these processes, resulting in more severe disease
manifestations. Our findings highlighted the augmented
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cytotoxicity and clonal proliferation of CD8 Tem cells in SLE,
marked by intensified cell-to-cell interactions and elevated
expression of ISGs. This suggests the critical involvement of
specific T cell subsets in SLE progression with type | IFN signaling
stimulation, and thereby presents a compelling rationale for
therapeutic interventions targeting such cell populations.

We also examined the cellular and molecular changes during
acute SLE exacerbations, particularly for CD8 T cells. This novel
approach uncovered a significant expansion of CD8 Tem cells,
characterized by upregulated expression of cytotoxicity-associated
genes and intensified IFN activity during flare-ups, indicating that
CD8 Tem cells contribute to exacerbating inflammation and
worsening disease activity. Notably, TCR repertoire analysis further
identified diverse and unique clonotypes among these cells in
each flare event. We observed an overall reduction in TCR diversity
and an expanded proportion of the top ten enriched clonotypes
during flares. Additionally, the clonal expansion during flares was
prominent in CD8 Tem cells. Prior studies have shown that clonally
expanded CD8 Tem cells in lupus nephritis directly mediate tissue
injury through epithelial adhesion and tubulitis®®, suggesting that
expanded CD8 Tem cells may play a direct role in driving renal
inflammation and damage. These findings suggest the observed
clonal expansion and cytotoxic signature of CD8 Tem cells in our
study may reflect functional involvement in tissue damage.

Together, our longitudinal tracking of functional and clonal
dynamics further emphasized the pivotal role of CD8 Tem cells in
fueling autoimmune activity throughout disease progression. The
increased cytotoxicity of CD8 T cells might expedite this process,
potentially resulting in swift inflammatory reactions and the
convergence of antigens during flare-ups. Despite these findings,
we did not identify specific pathogenic clonotypes within the
expanded CD8 Tem cell population, probably due to limited
patient numbers and sampling time points. Furthermore, diversity
measurements may have been sensitive to the thresholds used in
defining clonotype expansions, potentially amplifying the sig-
nificance of rare clonotypes. Nevertheless, CD8 T cell clonal
tracking provides cell-specific and temporally dynamic resolution
that may more effectively capture imminent immune activation
and inform real-time therapeutic decisions, whereas conventional
biomarkers often lack the precision to identify disease-driving
immune subsets. Therefore, future studies with larger cohorts and
deeper longitudinal sampling are needed to validate these
findings and to explore the potential of clonal dynamics as
predictive markers and therapeutic targets in SLE.

While our study advances the understanding of SLE pathogen-
esis, it is limited in direct observations of immune responses
within tissues and in the sample size. The juxtaposition of single-
cell profiles from PBMCs and kidney biopsies could provide a
comprehensive view of immune cell dysregulation and their
cellular engagement with the kidney parenchyma and stroma,
particularly in lupus nephritis. Furthermore, this dual analysis
could facilitate understanding the roles of circulating versus
tissue-resident immune cells in lupus nephritis, providing insights
into targeted interventions®. Despite such expected advantages,
kidney biopsies are invasive and difficult to obtain, necessitating
careful patient selection and clinical justification. With a relatively
straightforward and minimally invasive procedure, our study
serially collected PBMCs from patients with SLE throughout the
disease course and enabled us to identify surrogate bloodstream
biomarkers with great potential for clinical utility. In regard to the
constrained sample size in this study, we corroborated our
observations in two independent external datasets'""'”, and future
research with larger cohorts would reinforce our findings and
translate them to designing therapeutic interventions.

In summary, our study elucidates the intricate cellular dynamics and
immune alterations in SLE, which may serve as potential biomarkers for
predicting disease trajectories in patients. Molecular characterization of
CD8 Tem cells and their TCR clonotypes during flare events establishes
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a critical step toward expanding our understanding of immune
repertoire monitoring, and may also provide a foundation for the
development of the next generation of therapeutic interventions in the
management of SLE.

DATA AVAILABILITY

The raw and processed single-cell sequencing data generated in this study are
available from the Gene Expression Omnibus (GEO) under accession number
GSE254176. To support comparative analyses, external datasets were accessed via
the NBDC Human Database (E-GEAD-397) and the GEO database (GSE174188). All
codes supporting the findings of this study are available from the corresponding
authors upon request.
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