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Ephexin1, also known as neuronal guanine nucleotide exchange factor (NGEF), plays a key role in axon guidance and synaptic
homeostasis. However, our recent studies have revealed a critical role for Ephexin1 in the pathogenesis of colon and lung cancers.
Here we used multidisciplinary approaches to further explore the underlying mechanisms of Ephexin1 in cancer progression. We
discovered that Ephexin1 is essential for promoting polysome formation by coordinating the assembly of translation initiation
complexes. Our investigations into gene expression affected by Ephexin1 deficiency showed that Ephexin1 specifically promotes
the translation of genes containing 5′-terminal oligopyrimidine (TOP) or 5′-TOP-like motifs, identifying Ephexin1 as a key mediator
of mTOR-regulated translation. Importantly, we found that the efficacy of mTOR inhibitors in treating lung cancer was significantly
enhanced in a mouse xenograft model when Ephexin1 was deficient. This suggests that Ephexin1 could serve as a synthetic
lethality target for mTORC1-targeting therapeutics in cancer treatment. Our findings provide mechanistic insights into the role of
Ephexin1 in cancer pathogenesis and highlight its potential as a therapeutic target for improving current cancer treatment
strategies.
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INTRODUCTION
Cancer cells proliferate more rapidly than normal cells, necessitat-
ing increased metabolic inputs such as energy, amino acids,
nucleotides and lipids. The mammalian target of rapamycin
(mTOR) signaling pathway centrally orchestrates cell proliferation
and growth1,2. Dysregulation of this pathway is implicated in
numerous human diseases, underlining the importance of under-
standing mTOR-driven tumorigenesis as a crucial objective in
cancer therapy3–6. However, challenges remain, particularly
concerning the side effects and resistance associated with mTOR
inhibitors, highlighting gaps in our understanding of the
molecular mechanisms underlying effective treatment strategies
for mTOR-driven tumors7,8.
mTOR functions through two distinct complexes, mTORC1

and mTORC2, which regulate diverse cellular processes1.
mTORC1 primarily controls translation and autophagy, promot-
ing cell growth, while mTORC2 influences cytoskeletal dynamics,
cell survival and migration. Raptor and Rictor are key compo-
nents of mTORC1 and mTORC2, respectively, essential for their
function and localization2. Specifically, Raptor facilitates
mTORC1 substrate recognition and ribosomal association,
critical for mTORC1 assembly and its main function regulation
of mRNA translation. mTORC1 modulates protein synthesis
through phosphorylation of targets such as S6K1 and 4EBP1 and
selectively regulates the translation of mRNAs containing 5′-
terminal oligopyrimidine (TOP) motifs or 5′-pyrimidine-rich
translational elements2,9,10.

The regulation of TOP mRNA translation by mTORC1 remains a
promising but poorly understood area, suggesting potential
strategies for cancer cell control11. Recent studies have high-
lighted roles for U-rich RNA-binding proteins such as LARP1, AUF1,
TIA1 and TIAR in post-transcriptional regulation, though findings
on their involvement in TOP mRNA translation are mixed and
sometimes contradictory, indicating the complexity of this
regulation9,12–16.
Translation initiation factor 3 (eIF3) plays a central role at the

intersection of mTOR and S6K signaling pathways17,18 and is
upregulated in various cancers19,20. As the largest and most
complex of the eIFs, eIF3 consists of five essential core subunits
(eIF3a, b, c, i and g) and seven additional subunits (eIF3d, e, f, h, k, l
and m)21. Traditionally, eIF3 was thought to be released from the
ribosome once the 40S and 60S subunits joined during transla-
tion22. However, recent studies have shown that eIF3 remains
associated with the 60S ribosome, as well as with eukaryotic
elongation factors (eEF) and transfer RNA synthetase23–25. In
particular, the eIF3b-g-i subunit module acts like a mechanical arm
that can adopt multiple conformations. After the 40S ribosome
completes AUG scanning, a conformational change in this module
prevents the release of eIF3 from the 80S ribosome and allows it
to bind to the 60S subunit, promoting premature translation
elongation24,26,27.
Ephexin1, a member of the Dbl family of guanine nucleotide

exchange factors (GEFs), is typically less expressed outside the
nervous system28–30. Associated with EphA receptors, Ephexin1
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has primarily been studied in neurons, focusing on axon
outgrowth, synaptic remodeling and motor axon guidance29,30.
Research shows that Ephexin1 is often overexpressed in colon,
lung and thyroid cancers. Recent studies indicate that Ephexin1
promotes the formation of EphA2–EGFR heterodimers, binds
directly to Ras and increases malignancy, thereby worsening
patient prognosis via the Ras–AKT signaling pathway31–34.
Similarly, mTOR, which is also upregulated through the Ras–AKT
pathway, plays a significant role in the development of malignant
tumors33,35. Despite the critical roles of both Ephexin1 and mTOR
signaling in cancer progression, their functional relevance remains
largely unexplored.
In this study, we discovered that Ephexin1 directly binds to

translation initiation factors 2α, 3g and 3i, playing a crucial role in
cap-dependent translation. Notably, the interaction of Ephexin1
with the mTOR signaling pathway appears to regulate the
translation of TOP/TOP-like mRNAs. Furthermore, we observed
that the expression level of Ephexin1 correlates with the sensitivity
to mTOR inhibitors; especially, combining Ephexin1 deficiency
with mTOR inhibition significantly enhances the inhibitory effects
on lung cancer cell proliferation. These findings provide new
insights into the mechanism of translation control mediated by
mTORC1 in lung cancer cells and suggest potential therapeutic
strategies targeting these molecular interactions.

MATERIALS AND METHODS
Cell culture and transfection
H1299 were grown in RPMI-1640 medium (Invitrogen). LS174T cells were
cultured in minimum essential medium. HEK-293T, SW480, SW620, DLD-1,
U2OS, LoVo, HCT116, HCT116 p53−/− and HT-29 cells were maintained in
Dulbecco’s modified Eagle medium (Invitrogen). All cell lines were
purchased from the American Type Culture Collection (ATCC). All media
were supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin antibiotic solution. Cells were maintained in 5% CO2 in a
humidified atmosphere at 37 °C. Plasmids were transiently transfected into
mammalian cells using TurboFect (Thermo Scientific). Sodium arsenite,
MK2206, SP600125, SB202190 and U0126 were purchased from Sigma-
Aldrich and Torin1 and Bafilomycin A1 were purchased from
MedChemExpress.

Plasmid constructs and cloning
Human Ephexin1 was amplified by PCR from pCI-Flag-Ephexin133. To
prepare constructs of human Ephexin1 the PCR products were cloned into
the BamHI sites of pEF1a-FLBIO-neo-vector36. Constructs were verified by
DNA sequencing. For the isolation of recombinant proteins, the GST-
Ephexin1 (full-length) construct was as previously described33. pEF1a-VirA-
neo (no. 100548) and pFR_HCV_xb (no. 11510) plasmids were obtained
from Addgene. A comprehensive list of all PCR primers used in this study
can be found in Supplementary Table 3.

RT–qPCR
Total RNA was extracted from cell lysates using TriZol (Invitrogen) and 2 μg
of total RNA was reverse transcribed to cDNA using an oligo dT primer and
M-MuLV Reverse Transcriptase (Invitrogen). Quantitative PCR with reverse
transcription (RT–qPCR) analysis was performed using specific primers and
the SYBR Premix Ex Taq kit (TaKaRa Bio). The transcripts were detected by
CFX96 Real-Time PCR Detection System (Bio-Rad). The primers used for
RT–qPCR were Ephexin1, HSP90ab1, eEF1α, C-myc, CCT2, β-actin and
GAPDH. Each sample was analyzed in triplicate and target genes were
normalized relative to the reference housekeeping gene, β-actin. Relative
mRNA expression levels were calculated using the comparative threshold
cycle (Ct) method with β-actin as the control, according to the formula:
ΔCt= Ct (β-actin)− Ct (target gene). The fold change in gene expression
normalized to β-actin and relative to the control sample was calculated as
ΔΔCt. RT–qPCR primer sequences are listed in Supplementary Table 3.

RNA interference
Cells were transfected with siRNAs (40 nM) using Lipofectamine 2000
(Invitrogen). After 36 h, cells were trypsinized, replated and transfected

again for another 36 h. Knockdown efficiencies were verified by western
blot analysis. Ephexin1 siRNA (1–3) and shRNA constructs were as
previously described33, and siRNA and DNA oligonucleotides were
synthesized by Macrogen. The sequences of Ephexin1 siRNA and shRNA
can be found in Supplementary Table 4.

Immunoblot and IP analysis
Cell extracts were prepared in immunoprecipitation (IP)150 lysis buffer
(20mM Tris–HCl pH 7.6, 150 mM NaCl, 0.5% Nonidet P-40 and 10%
glycerol) containing protease inhibitors (1 mM Na2VO4, 10 mM NaF, 2 mM
PMSF, 5 μg/ml leupeptin, 10 μg/ml aprotinin and 1 μg/ml pepstatin A)
(Roche). Equal amounts of protein were separated by SDS–PAGE and
transferred onto PVDF membranes (PALL Life Sciences). Membranes were
subsequently incubated with the appropriate primary antibodies overnight
at 4 °C, followed by incubation with peroxidase-conjugated secondary
antibodies for 1 h at room temperature. Protein bands were visualized
using the ECL chemiluminescent detection system (iNtRON Biotechnol-
ogy). For IP of protein complexes, cell extracts were precleared with
protein G-Sepharose beads (GE Healthcare) and incubated with the
appropriate antibodies. Immune complexes were analyzed by immuno-
blotting using antibodies. The list of antibodies can be found in
Supplementary Table 5.

Tumor formation in nude mice
The mice used in this study were 6-week-old male BALB/c nude mice
purchased from NARA Biotech. They were housed in our pathogen-free
facility and handled in accordance with standard-use protocols and animal
welfare regulations. H1299 cells were collected and resuspended in PBS.
There after 1 × 106 H1299 cells were injected subcutaneously into the left
and right flanks of the mice. Once the tumors became visible, the tumor
size was measured every 3 to 4 days using micrometer calipers. Tumor
volumes were calculated using the following formula: volume = 0.5 a × b2,
where a and b represent the larger and smaller tumor diameters,
respectively. After approximately 8 weeks of injections, mice were
humanely sacrificed, and the primary tumors were excised and immedi-
ately weighed.

IHC
Immunohistochemistry (IHC) was performed on tissue microarrays of
colorectal cancer samples. Tissue microarrays from cancer samples of
different grades and adjacent normal tissues were purchased from Super
Bio Chips (CCA4) and Biomax (LC483). For IHC, heat-induced antigen
retrieval was performed using 1× antigen retrieval buffer (pH 9.0) (Abcam)
at 95 °C for 15min. After quenching of endogenous peroxidase and
blocking in 3% H2O2 solution, tissues were incubated with primary
antibodies overnight at 4 °C, followed by incubation with HRP-conjugated
secondary antibody for 1 h at room temperature and incubation for 2 min
in 3,3′-diaminobenzidine. The slides were then counterstained by
introducing Harris’s hematoxylin. The intensity of staining was scored
from 0 to 4 and the extent of staining was scored from 0% to 100%. The
final quantitation score for each stain was obtained by multiplying the two
scores. The slides were analyzed by two independent pathologists. The list
of antibodies can be found in Supplementary Table 5.

Polysome profiling analysis
Cell lysates of HEK-293T and H1299 were prepared in polysome profiling
buffer (20mM HEPES (pH 7.6), 125 mM KCl, 5 mM MgCl2, 2 mM
dithiothreitol (DTT) and diethylpyrocarbonate-treated water) for sucrose
gradient centrifugation. Extracts were incubated on ice for 15min, and the
insoluble material was pelleted by centrifugation at 13,000 rpm for 15min.
The resulting supernatant extracts were then loaded onto a ~17.5–50%
sucrose gradient prepared with polysome profiling buffer and ultracen-
trifuged for 2.4 h at 35,000 rpm in an SW41-Ti rotor (Beckman). Post-
centrifugation, the gradients were fractionated using a fraction collector
(Brandel), and their quality was monitored at 253 nm using a UA-6
absorbance detector (Isco).

Luciferase reporter assay
Cells seeded in 12-well plates were transiently transfected with luciferase
reporter and pCI-Flag-Ephexin1 plasmids. Luciferase activity was deter-
mined with a dual-luciferase assay system (Promega). The activity was
determined using a Glomax 20/20 luminometer (Promega).
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m7GTP pulldown assay
For the 7-monomethyl guanosine (m7GTP)-pulldown assay, cell extracts
were precleared with protein A-agarose beads (Santa Cruz Biotechnoloy
Inc.) and incubated with the m7GTP-agarose beads (Jena Biosciences) or
protein A-agarose beads (control). m7GTP-agarose beads were equili-
brated in m7GTP lysis buffer (50mM HEPES pH 7.6, 100mM KCl, 1 mM
EDTA, 1 mM DTT, 0.5% NP-40, 10% glycerol, 1 mM Na2VO4, 10 mM NaF,
2 mM PMSF, 5 μg/ml leupeptin, 10 μg/ml aprotinin and 1 μg/ml pepstatin
A) for 30min before use. The m7GTP/protein complexes were then
analyzed by immunoblotting. The antibodies are listed in Supplementary
Table 5.

Identification of genes related to sensitivity to mTOR
targeting agents
Datasets of human cancer cell lines were obtained from DepMap portal
(https://depmap.org/portal/, version 23Q2). Data on drug responses to
mTOR targeting agents, including Torin1, Torin2, Temsirolimus, Sirolimus,
Deforolimus and Everolimus, were obtained from the drug sensitivity
PRISM37(version 23Q2) file. Genome-wide CRISPR loss-of-function screen-
ing data used data from two large-scale CRISPR experiments (Chronos38

and CERES39). Gene effects were calculated via DEMETER2 (ref. 40) in
DepMap. The P value obtained from the test was then converted to
−log10 (P value) to score each gene. The R program and GraphPad Prism
(GraphPad Software Inc.) were used for visualization.

Two-dimensional electrophoresis
In the first-dimension analysis, 1 mg of protein was applied via electric
focusing onto immobilized pH gradient strips with a nonlinear pH range of
3–10. For the second-dimensional separations, the iso-electrically focused
strips were electrophoresed on a 9–16% gradient polyacrylamide gel until
the dye front reached the bottom of the gel. Subsequently, the gels were
stained using Coomassie Brilliant Blue G-250, scanned utilizing a GS-710
imaging densitometer from Bio-Rad, and subjected to analysis using
Melanie 7 image analysis software from GE Healthcare to quantify the
relative abundance of protein spots.

Identification of proteins by LC–MS/MS
Liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis
was performed through nano ACQUITY UPLC and LTQ Orbitrap mass
spectrometer (Thermo Electron). The column used BEH C18 1.7 μm,
100 μm× 100mm column (Waters, Milford). The mobile phase A for the LC
separation was 0.1% formic acid in deionized water and the mobile phase
B was 0.1% formic acid in acetonitrile. The chromatography gradient was
set up to give a linear increase from 10% B to 40% B for 16min, from 40%
B to 95% B for 8 min, and from 90% B to 10% B for 11min. The flow rate
was 0.5 µl/min. For MS/MS, mass spectra were acquired using data-
dependent acquisition with full mass scan (300–2,000m/z) followed by MS/
MS scans. Each MS/MS scan acquired was an average of one microscans on
the LTQ. The temperature of the ion transfer tube was controlled at 275 °C
and the spray was 2.3 kV. The normalized collision energy was set at 35%
for MS/MS. The individual spectra from MS/MS were processed using the
SEQUEST software (Thermo Quest) and the generated peak lists were used
to query in house database using the MASCOT program (Matrix Science
Ltd.). We set the modifications of carbamidomethyl (C), deamidated (NQ)
and oxidation (M) for MS analysis and the tolerance of the peptide mass
was 10 ppm. MS/MS ion mass tolerance was 0.8 Da, the allowance of
missed cleavage was 2 and charge states (+2, +3) were considered for data
analysis. We took only significant hits as defined by MASCOT probability
analysis.

Ribopuromycylation assay
HEK-293T and H1299 cells were seeded in a 60mm plate and grown for
2 days. The cells were pulsed with 10 μg/ml puromycin 10min at 37 °C in
5% CO2 incubator. The cells were washed with cold PBS twice and lysed
with RIPA lysis buffer. All proteins were subjected to western blot analysis.
Anti-puromycin antibody used to detect against ribopuromycylated
proteins.

RNP-IP
The protocol for ribonucleic acid–protein IP (RNP-IP) follows a previously
described method41. Cells were washed with cold PBS and resuspended in
lysis buffer (20mM Tris–HCl, pH 7.6, 150mM NaCl, 0.5% Nonidet P-40 and

10% glycerol) supplemented with protease inhibitors (1 mM Na2VO4,
10mM NaF, 2 mM PMSF, 5 μg/ml leupeptin, 10 μg/ml aprotinin and 1 μg/
ml pepstatin A) and 40 U/ml RiboLock RNase inhibitor (Fermentas) in
diethylpyrocarbonate-treated water. After a 15min incubation, samples
were centrifuged at 13,500g for 15 min. The supernatants were then
subjected to IP with streptavidin agarose (Invitrogen) at 4 °C overnight.
Following IP, the beads were washed five times with lysis buffer and the
RNA was extracted using Trizol. The RNA was then treated with DNase
(TURBO DNA-free kit) to remove any contaminating DNA and subsequently
used for RT–qPCR. Primer sequences for RT–qPCR are provided in
Supplementary Table 3.

Statistics
Data were presented as mean ± s.e.m. of three independent experiments
and significant differences between groups were assessed by two-tailed
paired Student’s t-test or two-way analysis of variance (ANOVA) using
GraphPad Prism (GraphPad Software Inc.). Results with a value of *P < 0.05,
**P < 0.01 and ***P < 0.001 were considered statistically significant.

RESULTS
Ephexin1 interacts with translation factors
Previous studies have demonstrated that Ephexin1 is upregu-
lated in lung cancer and significantly contributes to its
malignancy33,34. To further explore the physiological signifi-
cance and underlying mechanisms of these findings, we
engineered HEK-293T cells to stably express both Flag-tagged
and biotinylated Ephexin1, enabling us to probe the Ephexin1
interactome (Fig. 1a). We performed pulldown assays using
streptavidin on these engineered cells, as well as on control
cells expressing only the BirA biotin-ligase (BirA/HEK-293T). MS
analysis of the proteins specifically pulled down by biotinylated
Ephexin1 identified 65 proteins implicated in various biological
processes (Fig. 1b and Supplementary Table 1). A STRING-based
clustering analysis of these proteins highlighted that Ephexin1
interacts not only with components of the previously docu-
mented actin cytoskeleton pathway30 but also with key players
in translation initiation, ribosomal function and mRNA proces-
sing (Fig. 1c, d). To validate these interactions, we expressed
Flag-tagged Ephexin1 in HEK-293T cells and examined its
interactions with the identified proteins through co-IP and
western blotting (Fig. 1e). In addition, arsenite and heat shock
treatments, which induce aggregation of translation initiation
factors, increased the interaction of Flag-tagged Ephexin1 with
eIF3b, eIF4A1, eIF2a and eIF4E (Supplementary Fig. 1). These
results confirmed the interactions between Ephexin1 and
crucial components of the translation initiation machinery and
ribosomal proteins, supporting the MS findings. To determine
whether the co-IP interactions between Ephexin1 and transla-
tion initiation factors result from direct binding, we conducted
binding experiments using recombinant GST-fused Ephexin1
and Hisx6-tagged translation initiation factors, as detailed in
Fig. 1f. Our results showed that eukaryotic initiation factors 2α,
3g and 3i bind directly to Ephexin1 (Fig. 1f). This demonstrates
that Ephexin1 is directly involved with translation initiation
complexes. Notably, eIF3i/g is a core subunit of the eIF3
complex and is critical for its overall function21.
To investigate the role of Ephexin1 in translation, we used

polysome profiling to analyze the localization of Ephexin1 in
normal and EDTA-treated ribosome fractions (Fig. 1g and
Supplementary Fig. 2). Intriguingly, polysome profiling revealed
that Ephexin1 predominantly associates with the 40S and 60S
ribosomal peaks, indicating its specific involvement in early
stages of translation. To further elucidate the interactions of
Ephexin1 with translation initiation factors, we performed co-IP
experiments using polysome fractions isolated from HEK-293T
cells expressing either control or Flag-tagged Ephexin1. These
experiments confirmed that Flag–Ephexin1 interacts with key
translation initiation factors, such as eIF4A1 and eIF3s,
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specifically within the 40S ribosomal fractions (Fig. 1h). These
findings confirm the association of Ephexin1 with translation
initiation factors in the cytoplasm and provide compelling
evidence that Ephexin1 plays an active role in the translation
initiation process.

Ephexin1 promotes cap-dependent translation initiation
Cancer cell proliferation, migration and invasion rely heavily on
continuous protein synthesis42. Previous studies have demonstrated
that Ephexin1 deficiency impedes the growth of lung cancer and
colorectal cancer33. Furthermore, translational repression has been
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showing the interaction between recombinant Hisx6-tagged translation factors (eIF2α, eIF3i, eIF3h, eIF3m, eIF3g, eIF3f, eIF3e and eIF4A1) and
GST or GST-tagged Ephexin1 recombinant protein. g Polysome profiling analysis of Ephexin1, various translation initiation factors and
ribosomal proteins using H1299 cells. h, A schematic of the Ephexin1–translation factor interaction study. The diagram illustrates the co-IP
experiments conducted using 40S ribosomal and polysome fractions isolated from HEK-293T cells transfected with Flag-tagged Ephexin1.
Western blot analysis was performed using specific antibodies to detect and analyze the interactions between Ephexin1 and various
translation factors. FDR, false discovery rate; PPI, protein-protein interaction; IB, immunoblotting; PD, pull-down assay.
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linked to the induction of apoptosis43, a response we have observed
in cells lacking Ephexin1 (Fig. 2a,b). To investigate whether the
apoptosis associated with Ephexin1 deficiency is linked to its role in
translational regulation, we knocked down Ephexin1 in H1299 and
HEK-293T cells and performed ribopuromycin analysis to assess new
protein synthesis. The results, illustrated in Fig. 2c, reveal that

Ephexin1 knockdown significantly reduces puromycinated proteins
compared to controls, underscoring the crucial role of Ephexin1 in
maintaining normal protein synthesis mechanisms in cancer cells
(Fig. 2c and Supplementary Fig. 3a).
Overexpression of Flag-tagged Ephexin1 in HEK-293T cells led

to an increase in polysome formation, as observed through
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polysome profiling analysis. This overexpression also promoted
the movement of several key factors—including eIF3F, eIF3b,
eIF3i, eIF4E and eEF2—into the polysome fraction, along with
ribosomal proteins for both small and large ribosomes (Fig. 2d).
These findings align with previous studies suggesting that certain
translation initiation factors, such as eIF3, not only facilitate
translation initiation but also contribute to translation elongation
by staying associated with the 80S ribosome and elongation
factors23–27. In contrast, when Ephexin1 was depleted in HEK-293T
and H1299 cells, a reduction in polysome area was observed
during polysome profiling, along with prominent peaks for the
40S and 60S ribosomal subunits. Additionally, this depletion
caused the movement of eIF4A1, eIF4E, eIF3b, eIF3F, eIF3i and
eEF2 into monosomes (Fig. 2e and Supplementary Fig. 3b,c). These
results strongly suggest that Ephexin1 plays a key role in
regulating translation within cells.
Translation initiation is a critical regulatory step in protein

synthesis, influenced by various cellular pathways and protein
factors44. To investigate the functional significance of Ephexin1’s
interaction with components of the translation initiation complex,
we assessed its effect on the assembly of these complexes on the
m7G cap structure of mRNAs. In HEK-293T cells overexpressing
Flag-tagged Ephexin1, pulldown analysis using m7G cap analog-
conjugated agarose beads revealed significant findings. Over-
expression of Ephexin1 enhanced the association of eIF4G, eIF3b
and eIF3g with the m7G cap, whereas the binding of 4EBP1 to the
m7G cap was notably reduced (Fig. 2f). Ephexin1 deficiency
consistently diminished the interaction between eIF4A1 and eIF3i
with the m7G cap, a finding paralleled in IP analyses using eIF4E
antibodies (Supplementary Fig. 4a–c). These observations suggest
that Ephexin1 overexpression promotes the formation and
activation of initiation complexes, leading to enhanced translation
initiation by reducing the association of 4EBP1 with the mRNA cap
structure. Furthermore, these effects on translation regulation by
Ephexin1 may be linked to mTOR signaling, as the dissociation of
4EBP1 from the cap structure is known to be stimulated by mTOR
activation1,2. To verify that Ephexin1 overexpression enhances
translation initiation complex formation and subsequently
increases protein synthesis, we utilized a luciferase assay to
measure translation activity. The results depicted in Fig. 2g
demonstrate that cap-dependent translation, as indicated by
luciferase activity, increases in direct correlation with the
expression levels of Flag–Ephexin1 (Fig. 2g). These findings
collectively confirm that Ephexin1 not only facilitates the assembly
of initiation complexes but also significantly boosts translation
in cells.

Translational regulation of Ephexin1 is associated with the
mTORC1 pathway
The mTORC1 signaling pathway is crucial for controlling transla-
tion2. Based on evidence that Ephexin1 influences translational
activity and its expression correlates with the phosphorylation
status of 4EBP1 (Fig. 2 and Supplementary Fig. 5a,b), we

hypothesized that Ephexin1 plays a role in mTORC1-mediated
translation regulation. To explore this hypothesis, we examined
the relationship between Ephexin1 expression and mTOR activa-
tion across various cancer cell lines. There are seven recognized
phosphorylation sites on mTOR, among which the phosphoryla-
tion at Ser2448 is crucial for the activity of mTORC1 (refs. 7,45).
Western blot analysis revealed a strong correlation between
Ephexin1 expression and phosphorylation of mTOR at Serine 2448
(r= 0.7697, P= 0.0092), suggesting that Ephexin1 is significantly
linked to mTOR activation (Fig. 3a). To further investigate whether
increasing Ephexin1 levels enhances cellular mTOR activity, we
elevated Ephexin1 expression through transient transfection and
monitored the phosphorylation status of mTOR and its down-
stream targets, S6K1 and 4EBP1. The results depicted in Fig. 3b
show that as Ephexin1 expression increased, there was a
corresponding increase in the phosphorylation of mTOR, S6K1,
and 4EBP1, underscoring the importance of Ephexin1 in the
activation of mTOR signaling pathways. Depletion of Tsc1, a
negative regulator of mTORC1, led to mTORC1 hyperactivity46,47.
In Tsc1 knockdown MEF cells, there was increased recruitment of
Ephexin1, eIF4F complexes, and eIF3 complexes to the 5’ mRNA
cap compared to wild-type cells (Fig. 3c). Polysome profiling
further showed that Tsc1 knockout caused Ephexin1, eIF4A1,
eIF3b, eIF3i, and eEF2 to shift from monosomes to polysomes, in
contrast to wild-type cells (Fig. 3d). Conversely, treatment with the
mTOR inhibitor Torin1 in HEK-293T cells overexpressing
Flag–Ephexin1 reduced the interaction between Flag–Ephexin1
and eIF3f/eIF3i (Fig. 3e). Consistent with this, Torin1 treatment
caused Ephexin1, eIF4F complexes, eIF3 subunits, and eEF2 to shift
from polysome to monosome in polysome profiling analysis
(Fig. 3f). These results suggest a potential link between Ephexin1
and mTOR signaling in the regulation of translation.

Ephexin1 modulates translation of TOP/TOP-like mRNAs
To elucidate the role of Ephexin1 in translational regulation
within cancer cells, we utilized two-dimensional (2D) gel
electrophoresis and MS to identify proteins whose expression
levels decrease as a result of Ephexin1 loss. This analysis was
performed on control and Ephexin1-depleted H1299 cells
(Fig. 4a). In our 2D gel electrophoresis study, we identified a
total of 220 protein spots. Quantitative image analysis revealed
that 47 of these spots exhibited reduced intensity due to
Ephexin1 deficiency, with 11 of them showing a decrease of
more than twofold. In contrast, 37 spots increased in intensity in
Ephexin1-deficient cells, with five showing an increase greater
than twofold. No significant changes were detected in the
remaining 136 spots (Fig. 4b). Since Ephexin1 deficiency leads to
translation inhibition (Fig. 2), we focused on the protein spots
that were reduced following Ephexin1 depletion. Protein spots
that exhibited more than a twofold change were subjected to
further MS analysis. This led to the identification of 47 statistically
significant protein peptides from the 11 reduced spots (Fig. 4c
and Supplementary Table 2).

Fig. 2 Ephexin1 promotes cap-dependent translation initiation. a HEK-293T and HeLa cells were transfected with siCONT or siEphexin1
(nos. 1–2) and nuclear staining was performed using Hoechst 33258. The white arrows indicate cells with fragmented nuclei. b siControl and
siEphexin1 were transfected into H1299 cells for 72 h and analyzed by western blot to detect protein levels. c Translation efficiency in
response to Ephexin1 depletion was evaluated using a ribopuromycylation assay in HEK-293T cells subjected to either control treatment or
Ephexin1 knockdown. The extent of puromycylated proteins was quantified by western blot analysis using an anti-puromycin antibody, while
total protein levels were assessed through Ponceau S staining. d The distribution of Ephexin1 and selected translation factors in the polysome
profiles of HEK-293T cells transfected with either a Flag-empty vector or Flag-tagged Ephexin1 was analyzed. e The distribution of translation
factors in the polysome profiles upon the knockdown of Ephexin1 in HEK-293T cells. f The role of Ephexin1 in assembling eIF4F and eIF3
complexes. The impact of Ephexin1 on the formation of eIF4F and eIF3 complexes was investigated using an m7GTP pulldown assay. HEK-
293T cells transfected with either a Flag-empty vector or Flag-tagged Ephexin1 were analyzed. eEF2 served as a negative control. Proteins
associated with the m7G cap were identified through western blot analysis. g The influence of Ephexin1 on cap-dependent translation
initiation was examined in HEK-293T cells cotransfected with Flag-tagged Ephexin1 and an FLuc-HIV_IRES-RLuc plasmid. Translation activity
was assessed using a dual-luciferase assay.
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We conducted functional classification and network association
analysis using STRING software (https://string-db.org) to categor-
ize the downregulated proteins identified from 2D gel electro-
phoresis LC–MS/MS analysis. These proteins were linked to key
pathways such as cell cycle regulation, PI3K–AKT signaling, Hippo
signaling, protein processing, spliceosome and estrogen signaling
(Fig. 4d). The downregulation of these pathways is known to

inhibit cancer cell proliferation and is closely associated with
mTOR signaling35,48,49. Notably, 53% of the proteins down-
regulated due to Ephexin1 deficiency in our analysis contained
5′-TOP or 5′-TOP-like motifs in their genes (Fig. 4e). Interestingly,
ribosomal proteins, which are some of the most well-known 5′-
TOP-regulated gene products10, were not detected in our MS
analysis. Consistently, the protein levels of ribosome proteins S3,
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S6, L26 and L36a remained unchanged by either Flag–Ephexin1
overexpression or depletion (Supplementary Fig. 6). In contrast,
Ephexin1 predominantly influenced the expression of cancer-
associated proteins with 5′-TOP motifs in their genes (Fig. 4a–e
and Supplementary Table 2). These proteins—such as HSP90ab1,
eEF1α1, c-Myc and CCT2—play critical roles in cancer cell growth
and survival by regulating protein stability, synthesis and
transcription50–55. In Ephexin1-deficient cells, these proteins were
downregulated, even though they are normally activated by
mTOR through translational regulation of mTOR-responsive cis-
elements9,10. As a result of Ephexin1 deficiency, the protein levels
of HSP90ab1, eEF1α1 and c-Myc were reduced, although their
mRNA levels remained unchanged. No changes in protein stability
due to ubiquitination were observed (Fig. 4f and Supplementary
Fig. 7a,b). Interestingly, in the biotinylated Ephexin1/HEK-293T cell
line, streptavidin pulldown followed by RNP-IP analysis demon-
strated an association between Ephexin1 and the mRNAs of
HSP90ab1, eEF1α1, c-Myc and CCT2. In contrast, proteins not
regulated by Ephexin1 exhibited no such association (Fig. 4g and
Supplementary Fig. 8).
On the basis of these findings, we hypothesized that Ephexin1

regulates the translation of 5′-TOP mRNAs, which are under the
control of the mTORC1 pathway. To test this hypothesis, we
performed polysome profiling analysis in HEK-293T cells with
Ephexin1 overexpression and depletion. Compared with control
cells, Ephexin1 depletion caused the mRNAs of HSP90ab1, eEF1α1,
c-myc and CCT2 to shift to lighter polysome fractions, indicating
reduced translation. In contrast, overexpression of Ephexin1
shifted these mRNAs to heavier polysome fractions, signifying
increased translation. Importantly, non-TOP mRNAs, such as
β-actin, CCND1, CDKN1A, CTNNB1 and VEGFA, did not exhibit
any changes in polysome distribution (Fig. 4h,i). These results
suggest that Ephexin1 may serve as a novel mediator of mTORC1-
regulated TOP mRNA translation.
In lung cancer, deregulation of mTOR signaling plays a key role

in accelerating tumor progression and increasing malignancy56,57.
Additionally, elevated Ephexin1 expression in lung cancer is
closely linked to both tumor progression and patient prog-
nosis31,33. On the basis of these observations, our findings on
Ephexin1’s regulation of 5′-TOP mRNA translation, we hypothe-
sized that mTOR target genes, such as HSP90ab1, eEF1a1 and c-
Myc, along with Ephexin1, are involved in lung cancer progression.
To explore the clinical relevance of these proteins in lung cancer,
we conducted a tissue microarray analysis using samples that
included normal lung tissues, various grades of carcinoma and
metastatic tumors from patients with lung cancer Our findings
revealed that the levels of Ephexin1, HSP90ab1, c-Myc and eEF1α1
were significantly elevated in lung cancer tissues compared with
normal tissues and showed a progressive increase with advancing
tumor grade and metastasis (Fig. 5a, b). Moreover, the expression
levels of Ephexin1 and associated mTOR target genes were
positively correlated, demonstrating statistical significance
(Fig. 5c). However, ribosomal proteins S6 and L26 were elevated
in tumors compared with normal tissues, but their correlation with
Ephexin1 was not statistically significant (Fig. 5a–c).

Role of Ephexin1 in enhancing mTOR inhibitor efficacy
against cancer
Torin1, Torin2, Temsirolimus, Sirolimus, Deforolimus and Ever-
olimus are inhibitors that target the mTOR, a key kinase involved in
cell growth, proliferation, and metabolism. These inhibitors are
extensively utilized in both research and clinical settings for cancer
treatment, immune modulation and in other diseases4,6. Despite
considerable advances in developing these inhibitors as cancer
therapies4–7, resistance to the drugs continues to pose significant
challenges58,59. To explore this issue further, we investigated
whether there is a link between the expression of Ephexin1 in
cancer cells and their resistance to mTOR inhibitors. To further
investigate this issue, we utilized datasets available on the DepMap
portal (https://depmap.org/portal/, version 23Q2). We analyzed the
viability of cancer cells in relation to Ephexin1 gene expression,
which was modulated using CRISPR technology, following treat-
ment with mTOR inhibitors37–39. Our findings revealed a strong
positive correlation between decreased Ephexin1 expression and
decreased viability of cancer cells treated with these inhibitors.
Conversely, the TSC2 gene, which is instrumental in suppressing
mTOR signaling, showed a significant negative correlation. Notably,
cancer cells demonstrated enhanced sensitivity to the potent
mTOR inhibitors, Torin1 and Torin2, when Ephexin1 expression was
reduced (Fig. 6a, b and Supplementary Fig. 9).
Further investigation into the role of Ephexin1 in cancer

progression revealed that Ephexin1 deficiency influences mTORC1
signaling pathway activity, impacting tumorigenesis. In an experi-
mental setup, Torin1 was administered every 3–4 days over
30 days to mice with tumors derived from either control H1299
cells or Ephexin1-deficient H1299 cells. Tumors in Ephexin1-
deficient mice were notably smaller in both volume and weight
compared with controls treated with Torin1, although body
weights were not different (Fig. 6c–g). Additionally, immunohisto-
logical analysis of these tumors showed significantly higher levels
of cleaved PARP1 and cleaved Caspase3 in the Ephexin1-deficient
and Torin1-treated group compared to controls (Fig. 6h–j).
Immunoblot analysis further demonstrated that Ephexin1

depletion led to reduced phosphorylation of mTOR and its target
protein rpS6, enhancing the inhibitory effects of Torin1 on mTOR
signaling (Fig. 6k). Interestingly, in Ephexin1-deficient H1299 cells,
Torin1 treatment did not alter—or even slightly increased—the
mRNA levels of HSP90ab1, eEF1α and c-myc, but significantly
reduced their protein levels (Fig. 6l, m). Consistently, treatment
with the mTORC1-specific inhibitor Everolimus resulted in a
significant reduction in cell viability in Ephexin1-deficient cells
compared with the control group. Western blot analysis revealed
similar results, akin to those observed following Torin treatment
(Supplementary Fig. 10a, b). These findings collectively suggest
that targeting Ephexin1 may potentiate the tumor-suppressive
effects of mTOR inhibitors in lung cancer therapy.

DISCUSSION
Ephexin1, also known as neuronal guanine nucleotide exchange
factor (NGEF), is predominantly expressed in the nervous system,

Fig. 3 Translation regulation by Ephexin1 is associated with mTOR signaling. a Correlation analysis of Ephexin1 expression and mTOR
kinase phosphorylation across ten cancer cell lines. Western blot analysis was conducted to evaluate the relationship between Ephexin1
expression levels and the phosphorylation status of mTOR kinase in ten different cancer cell lines using the specified antibodies. b Activation
of mTOR signaling in response to Ephexin1 overexpression was assessed by measuring the phosphorylation levels of downstream target
proteins. c Ephexin1, eIF4F and eIF3 complexes were isolated from the lysates of wild-type MEF (MEF WT) and TSC knockout (TSC KO) cells
using an m7GTP pulldown assay. The composition of these complexes was subsequently analyzed by western blot. d The protein distribution
in polysome profiling of TSC1 WT and TSC1 KO MEF cells. Protein profiles from polysome profiling of both TSC1 WT and TSC1 KO MEF cells
were analyzed by western blot using the specified antibodies. e Co-IP was conducted on protein extracts from HEK-293T cells transfected with
Flag-tagged Ephexin1 and treated with Torin1 (250 nM for 1 h). IP was performed using an anti-Flag antibody. f Polysome profiling was
conducted on HEK-293T cells treated either with a mock solution or Torin1 (250 nM for 1 h). The distribution of proteins was analyzed using
western blot with the specified antibodies.
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where it plays a key role in axon guidance and synaptic
homeostasis29,30. Dysregulation of Ephexin1 has been linked to
various neurological conditions, including neurodevelopmental
and neurodegenerative disorders, as well as depression29,30,60.
Interestingly, the initial study that identified NGEF also revealed its

oncogenic potential by showing that H-RasG12V overexpression
increases Ephexin1 mRNA levels28,61. Despite this early finding, the
role of Ephexin1 in cancer biology was largely overlooked. Recent
research, including our own, has highlighted its oncogenic
function, particularly in colon and lung cancers31–34. Ephexin1
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deficiency significantly inhibits the growth of these cancers and is
strongly correlated with patient prognosis33,34.
In this study, we explored the molecular mechanisms under-

lying the role of Ephexin1 in cancer pathogenesis. We discovered
that Ephexin1 is crucial for regulating cap-dependent translation
initiation, specifically focusing on 5′-TOP motif-containing genes,
which are highly relevant in cancer progression. While mTOR-
regulated translation of 5′-TOP mRNAs is well documented, the
underlying molecular mechanisms are not fully understood9–11.
Our findings identify Ephexin1 as a key interface between mTOR
signaling and the translation of 5′-TOP mRNAs. This regulatory role

is closely linked to the prognosis of patients with lung cancer,
where Ephexin1 overexpression is associated with increased cell
proliferation, migration and overall prognosis33,34.
mTOR is frequently deregulated in many cancers, making it a

critical target for cancer therapies4–6. Rapalogs, rapamycin
analogs, have been approved for treating advanced cancers such
as renal cell carcinoma, pancreatic neuroendocrine tumors and
advanced breast cancer62–64. However, their therapeutic effective-
ness can be compromised by feedback activation of IGF-IR and
AKT, counteracting the effects of mTORC1 inhibition65. Drug
resistance also remains a significant challenge in cancer treatment,

Fig. 4 Regulatory role of Ephexin1 in translation initiation is associated with an mTORC1-controlled translation mechanism. a The 2D gel
electrophoresis analysis of proteins upon the knockdown of Ephexin1 in H1299 cells. The yellow numbers highlight the protein spots reduced
by more than twofold in Ephexin1-deficient extracts. b Comparative protein expression analysis in shControl and shEhexin1_H1299 cells using
2D gel electrophoresis image analysis. c Magnified images and MS of 11 spots showing more than a twofold reduction in the previous 2D-gel
electrophoresis. d Proteins exhibiting reduced expression in Ephexin1-deficient cells were analyzed using STRING to determine interactions
and functional associations. Cluster analysis displays strength and false discovery rate (FDR) values for protein clusters showing decreased
levels in Ephexin1-deficient lysates. e Identification of TOP/TOP-like feature containing genes among proteins identified in the 2D gel and MS
analyses. f Protein and mRNA levels of genes identified in e in H1299 cells. g RNP-IP analysis using RT–qPCR after pulldown with streptavidin
in a HEK-293T/Flag-biotinylated Ephexin1 stable cell line. h, i Polysome profiling upon gain or loss of Ephexin1 in HEK-293T cells: cells
transfected with shEphexin1 or Flag–Ephexin1 underwent polysome fractionation (h), followed by RT–qPCR analysis of TOP/TOP-like and non-
TOP feature containing mRNAs, presented in a cumulative plot (i). KEGG, Kyoto Encyclopedia of Genes and Genomes; ns, not significant.
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as long-term use of chemotherapy and targeted therapies often
leads to resistance. Tumors with KRAS, BRAF and TSC mutations
are particularly resistant to mTOR inhibitors66–68. However,
combined inhibition of the AKT/mTOR and Wnt/β-catenin path-
ways has been shown to significantly improve the effectiveness of

mTOR inhibitors3,58. Given that Ephexin1 is involved in both Ras/
AKT and Wnt/β-catenin signaling, it may help overcome resistance
to mTOR inhibitors. Studies in patients with renal cell carcinoma
have shown that mutations in TSC1/2 and mTOR are associated
with rapalog resistance, although these mutations are not present
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in most patients, supporting the potential of targeting Ephexin1 in
overcoming resistance68.
In cancer treatment, drug side effects are also a major concern.

Although mTOR inhibitors are generally well tolerated, they can
cause serious side effects due to the essential role of mTOR in
normal cellular homeostasis. For instance, in a phase 2 clinical trial
of Voxtalisib (50 mg, twice daily), serious side effects were
reported in 58.1% of patients8. Ephexin1, normally expressed at
low levels in most tissues, is overexpressed in lung and colon
cancer cells29,30,33,34. Therefore, reducing the dosage of mTOR
inhibitors while effectively targeting Ephexin1 may offer a
treatment strategy that reduces side effects while maintaining
efficacy.
Translation of 5′-TOP motif-containing mRNAs is activated

during cancer cell invasion, migration and metastasis, with RNA-
binding proteins such as LARP1, CNBP, AUF1 and TIAR1 involved in
this process9,12–15. However, the precise interactions among these
proteins remain poorly understood. In our study, we found that
Ephexin1 selectively regulates the translation of cancer-specific 5′-
TOP mRNAs rather than ribosomal proteins, which are typical TOP
mRNAs. While it is possible that Ephexin1 directly interacts with
specific translation initiation factors to mediate this regulation, the
evidence remains insufficient to confirm this mechanism. An
alternative hypothesis is that Ephexin1 interacts with RNA-binding
proteins to achieve selective translational control. Given the
involvement of LARP1, CNBP, AUF1 and TIAR1 in 5′-TOP mRNA
regulation and the largely unexplored nature of their regulatory
networks, it is plausible that Ephexin1 coordinates with these
proteins to modulate the translation of cancer-specific mRNAs.
Furthermore, Ephexin1-mediated activation of mTOR specifically
governs the activity of these RBPs in a context-dependent manner
by regulating their post-translational modifications. Additionally,
selective activation of these RBPs would result in Ephexin1-driven
targeted translation of 5′-TOP mRNAs. Understanding how
Ephexin1 interacts with these RNA-binding proteins could provide
valuable insights into mRNA translation regulation in cancer cells
and suggest new therapeutic targets to disrupt aberrant protein
synthesis pathways involved in tumor growth.
In summary, our study highlights the critical role of Ephexin1 in

cancer progression, particularly through its selective regulation of
5′-TOP mRNA translation. This identifies Ephexin1 as a key factor in
mTOR-regulated gene expression and cancer pathogenesis
(Fig. 6n). Given the enhanced efficacy of mTOR inhibitors when
Ephexin1 is downregulated, Ephexin1 represents a promising
target for synthetic lethality strategies in mTOR-targeted cancer
therapies.
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