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Abstract 

The rapid classification of ancient murals is a pressing issue confronting scholars due to the rich content and infor-
mation contained in images. Convolutional neural networks (CNNs) have been extensively applied in the field of 
computer vision because of their excellent classification performance. However, the network architecture of CNNs 
tends to be complex, which can lead to overfitting. To address the overfitting problem for CNNs, a classification model 
for ancient murals was developed in this study on the basis of a pretrained VGGNet model that integrates a depth 
migration model and simple low-level vision. First, we utilized a data enhancement algorithm to augment the original 
mural dataset. Then, transfer learning was applied to adapt a pretrained VGGNet model to the dataset, and this model 
was subsequently used to extract high-level visual features after readjustment. These extracted features were fused 
with the low-level features of the murals, such as color and texture, to form feature descriptors. Last, these descrip-
tors were input into classifiers to obtain the final classification outcomes. The precision rate, recall rate and F1-score of 
the proposed model were found to be 80.64%, 78.06% and 78.63%, respectively, over the constructed mural dataset. 
Comparisons with AlexNet and a traditional backpropagation (BP) network illustrated the effectiveness of the pro-
posed method for mural image classification. The generalization ability of the proposed method was proven through 
its application to different datasets. The algorithm proposed in this study comprehensively considers both the high- 
and low-level visual characteristics of murals, consistent with human vision.
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Introduction
Ancient Chinese murals have a long history and reflect 
the social and cultural characteristics of life at the time 
of their creation. Thus, they offer an important basis 
for understanding the development of human history, 
culture, art, science and technology and thus for fur-
ther promoting the development of human civilization. 
Ancient Chinese murals constitute an indispensable class 
of ancient Chinese paintings [1]. Due to the numerous 
categories to which such murals may belong, the artifi-
cial classification of murals is onerous and time consum-
ing, indirectly resulting in the slow development of mural 
research [2]. However, with the development and broad 

application of digitization technology, an increasing 
number of ancient murals have gradually been digitized, 
which makes large-scale mural art analysis possible. On 
the one hand, the availability of a large number of digi-
tized mural images provides researchers with abundant 
research data. On the other hand, these data present 
researchers with new questions regarding the effective 
use of such massive digital sources. Among these various 
questions, the question that is currently most important 
to resolve is how to use computers to analyze the ele-
ments contained in these mural images, based on which 
these images can then be effectively classified for fur-
ther analysis, such as digital restoration, superresolution 
reconstruction or art value appraisal. Accordingly, such 
classification is expected to be of practical significance 
for art researchers conducting historical, anthropological 
and artistic investigations [3].
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Traditional computer-assisted mural classification 
methods utilize traditional classifiers based on low-
level features extracted from murals [4]. Tang et  al. [5] 
extracted contour features from mural images and used 
these features as similarity metrics between images. 
Later, Tang et  al. [6] adopted scale-invariant feature 
transform (SIFT) features, combined with a support vec-
tor machine (SVM) classifier, to classify murals. Yang 
et  al. [7] assessed the aesthetic visual style of murals in 
terms of composition, color and brightness attributes. 
Liu [8] extracted auspicious cloud elements, and Hao [9] 
obtained weighted characteristics such as colors, textures 
and contours of character images for mural classification. 
In the above methods, murals were classified using low-
level features as proxies for high-level features for mural 
classification, and various approaches were adopted for 
mining the features of murals. Although these methods 
have some merits, they also have some limitations, as 
they are still unable to transcend the “semantic gap” and 
lack the ability to represent high-level semantics [10]. 
Nevertheless, on the basis of extracted low-level image 
features, the introduction of descriptors for the abstract 
representation of high-level features could enable the 
image features of murals to be comprehensively captured.

With the development of deep learning, deep neu-
ral networks have displayed a strong feature extraction 
ability, and end-to-end deep representations generated 
with such networks can effectively represent images at 
a more abstract level in addition to capturing their low-
level information [11]. Among the available deep learning 
methods, convolutional neural networks (CNNs) have 
received widespread attention and are widely applied 
due to their good classification performance in the 
field of computer vision [12]. Shelhamer et al. [13] used 
AlexNet, the Visual Geometry Group network (VGG-
Net) and GoogLeNet to construct fully convolutional 
networks for the semantic segmentation of images, thus 
greatly improving the semantic segmentation perfor-
mance. To reduce economic losses caused by disease 
in the agricultural sector, Fuentes et  al. [14] proposed a 
real-time deep-learning-based detector that could accu-
rately and quickly detect tomato plant diseases and pest 
infestations. Ghazi et  al. [15] used three popular deep 
learning architectures (i.e., GoogLeNet, AlexNet, and 
VGGNet) to identify plant species captured in photo-
graphs and assessed the different factors that influenced 
the performance of these networks. In the field of medi-
cine, Lee et al. [16] developed an automatic deep feature 
classification (DFC) method for distinguishing benign 
angiomyolipoma without visible fat (AMLwvf) from 
malignant clear cell renal cell carcinoma (ccRCC) using 
abdominal contrast-enhanced computed tomography 
(CECT) images, which further improved the quality of 

the features used to distinguish AMLwvf and ccRCC in 
abdominal CECT images. However, in the mural domain, 
there is little literature on the application of CNNs for the 
classification of mural images, and related research is still 
in the nascent stage. Sun et al. [17] adopted four differ-
ent algorithms (deep belief networks (DBNs), partial least 
squares regression (PLSR), principal component analysis 
with a support vector machine (PCA + SVM) and princi-
pal component analysis with an artificial neural network 
(PCA + ANN)) to classify the degree of flaking in the 
Mogao Grottoes based on the artificially labeled domains 
of interest. Later, Li et al. [18] proposed an unsupervised 
method of predicting the flaking degree for the Mogao 
Grottoes. However, due to the lack of supervision, the 
entire prediction process is complex. Wang et  al. [19] 
adopted a two-layer CNN to extract the abstract fea-
tures of murals and was able to classify ancient mural 
pigments. In a study by Caspari and Grespo [20], 3 con-
volution layers, 3 pooling layers and 2 fully connected 
(FC) layers were used to preliminarily analyze satellite 
images and promote research in the field of archeology. 
Li et al. [21] encoded the features of paintings by combin-
ing complex color shape descriptors with a 6-layer deep 
CNN for dynasty classification. Zou et al. [22] performed 
SVM classification by extracting SIFT and adjacent con-
tour segment (kAS) feature descriptors to express shape 
features and adopted a depth confidence network to 
encode and refine the features. However, these classifica-
tion efforts were still based on low-level CNNs. There-
fore, the classification effects were not ideal. There are 
numerous ancient mural images; therefore, it is expen-
sive to capture information from these images. On the 
other hand, the problem of overfitting is likely to occur 
when a deep CNN is adopted for the classification of 
only a limited number of digital murals. To address this 
challenge, transfer learning can be used for fine-tuning 
to adapt a pretrained model to different target domain, 
which greatly improves the classification efficiency of the 
resulting model. In recent years, transfer learning has 
seen a gradual increase in its scope of application and has 
become an effective means of possibly avoiding overfit-
ting [23].

Therefore, in view of the current state of research as 
summarized above, in the study presented in this paper, 
we mainly investigated a means of comprehensively rep-
resenting high- and low-level features of ancient mural 
images. First, we augmented the available samples of 
mural images and subjected a VGGNet model [24] to 
transfer learning. We extracted high-level mural fea-
tures by fine-tuning the parameters of the model. Then, 
the extracted color histogram and local binary pattern 
(LBP) texture features were integrated to create fea-
ture descriptors capturing not only low-level color and 
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texture features but also the deep semantics of the mural 
images. Finally, these feature descriptors were input into 
an SVM classifier to automatically and efficiently classify 
the mural images.

The main contributions of this study include the 
following:

(1)	 In this study, a pretrained classification model 
for natural images was adapted for application to 
ancient mural images through transfer learning. 
This approach not only makes use of the general 
characteristics of natural objects (because mural 
images are abstractly conceived depictions of natu-
ral objects) but also solves the problem of insuffi-
cient training data for mural image classification 
due to a small number of samples.

(2)	 A feature extraction layer was designed based on 
feature fusion. Low-level features not only are used 
for the error analysis of high-level features but also 
are fused with the high-level features to form a fea-
ture descriptor that achieves high- and low-level 
visual fusion in a real sense to enrich the expres-
sion of mural features. This design is important to 
the classification task: it not only considers color 
and texture information that is of significance to the 
semantic expression of murals but also fully enables 
the extraction of semantic image features that are 
consistent with human vision.

Methods
Extraction of low‑level feature descriptors
Color histogram and LBP features
Pigments, which are essential components of murals, 
describe the color layout of a whole image. Color fea-
tures intuitively reflect the color of an image and are the 
simplest features to extract. In particular, the statistical 
properties of the color histogram can be used to directly 
count the number of pixels of each color type.

where C(m) represents the number of pixels in the mth-
grade color space, i represents a color grade in the color 
histogram, and δ( · ) indicates whether the color value at 
position (i,j) in the image is equivalent to the mth color 
grade (if yes, this function returns a value of 1; other-
wise, it returns 0). Equation  (2) presents the normaliza-
tion process, in which the number of pixels of each color 
grade is normalized and then divided by the total number 
of image pixels N to obtain the final characteristic vector 
Hist:

(1)C(m) =

W
∑

i=0

H
∑

j=0

δ(I[i, j] = m), 1 ≤ m ≤ M

In addition, mural images are painted by humans, and 
ach element contains a unique texture design, i.e., the lin-
ear grain present in the painting. The texture of a mural 
is also referred to as its grain. Therefore, texture features 
can also be used as low-level features of a mural. Among 
the texture features that have been developed to date, 
LBP descriptors are simple and effective local feature 
descriptors for images. Equation (3) gives the formula for 
calculating LBP descriptors.

where (xc, yc) is the central point of a domain and p(c) 
represents the pixel value at that point. The circle with 
this point as its center and a radius of R is denoted by 
O. There are N points on the circle. Accordingly, r rep-
resents the rth pixel, p(r) represents the pixel value of 
the rth pixel among the N points, and the definition of 
s(·) is given in Eq. (4). s(·) is a signifier function that sets 
the pixel value to 1 when the pixel value of a surrounding 
pixel is larger than that of the center pixel value and to 0 
otherwise. Finally, an N-number signifier sequence con-
taining only values of 0 and 1 is obtained.

VGGNet model
VGGNet is an improvement over AlexNet; these models 
won first and second place, respectively, in the location 
and classification competitions of the 2014 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC). Of 
the VGGNet models, VGG-16 is the most commonly 
used network. The structure of VGG-16 is shown in 
Table 1, where the column titled ‘Layer’ indicates the net-
work layer, the ‘Size’ column gives the size information 
for the image in each layer, the ‘Filter’ column specifies 
the convolution kernel, the ‘Stride’ column gives the step 
length, and the ‘Dropout’ column gives the probability of 
the random dropout of neurons. The number of catego-
ries is 1000.

As shown in Table 1, VGGNet is composed of 13 con-
volutional layers and 3 FC layers, among which the con-
volution kernels are all based on small 3 × 3 kernels. 
Compared with a large 5 × 5 convolution kernel, this 
design has the advantage that two stacked 3 × 3 convolu-
tional layers having a field of vision equivalent to that of a 
5 × 5 convolution kernel but fewer parameters. As shown 
in Fig. 1, under the assumption that the numbers of input 

(2)Hist =

(

c(1)

N
, ...,

c(i)

N
, ...,

c(m)

N

)

, 0 ≤ i ≤ m

(3)L(xc, yc) =

N
∑

r=1

s(p(r)− p(c)) ∗ 2r

(4)s(x) =

{

1, |x| ≥ 0,

0, otherwise.
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and output channels are both 1, the size of the convolu-
tion kernel depicted in Fig. 1a is 3 × 3 × 2 = 18, while that 
in Fig. 1b is 5 × 5 = 25. Thus, the merit of small 3 × 3 con-
volution kernels over a large 5 × 5 convolution kernel is 
evident. Increasing the number of network layers indi-
rectly enriches the linear representation capabilities of 
the network, which is an implicit regular representation. 
The VGGNet model has good application prospects for 
transfer learning because of its features, i.e., deep layers 
and small convolution kernels.

However, due to the large network depth of the VGG-
Net model, it is prone to overfitting when the sample 
size is small. Transfer learning can be implemented to 

greatly mitigate this dilemma. In the transfer learning 
process, the parameters of a pretrained VGGNet model 
obtained through general training on a large-scale data-
set, such as ImageNet, are fine-tuned on the knowledge 
acquired from the small target sample set. Finally, the 
fine-tuned model can be used to solve the classification 
problem for the application of interest. Based on this 
approach, in this study, we modified the VGGNet model 
through transfer learning to obtain high-level features 
of murals.

Mural classification based on the improved VGGNet model
Network framework for mural classification
The quality of mural image extraction is a critical factor 
affecting the classification performance. The extraction 
of the low-level features of an image is simple and usu-
ally fast, yet these features are unable to provide a high-
level semantic representation of the image. High-level 
features, defined in relation to low-level features, refer to 
features that can represent the image semantics to some 
extent. However, the gradient diffusion phenomenon 
becomes more evident in deeper network layers, which 
may cause the loss of some low-level features. Therefore, 
to integrate the advantages of human vision in each layer, 
we decided to combine low-level features and high-level 
features to better represent the information contained 
in mural images. First, the pretrained VGG-16 network 
was used as the basic network to extract high-level fea-
tures. Next, color features and LBP texture features were 
extracted as low-level features. Then, these high-level and 
low-level features were fused to form the feature descrip-
tor for mural classification. Finally, we developed a classi-
fication network for mural images based on an improved 
VGGNet model that integrates transfer learning and low-
level features. The structure of the network is shown in 
Fig. 2.

As shown in Fig.  2, first, features closely associated 
with the global information of the input mural image 
were obtained by fine-tuning the FC layers such that the 
4096-dimensional output of the second FC layer would 
represent high-level features. Second, to ensure the 
fairness of the high-level features in expressing the fea-
tures of the mural and avoid breaking the linear relation 
between the low- and high-level features, the high- and 
low-level features were simply concatenated to obtain 
the final feature descriptor of the mural. Because the 
low-level features were obtained as an eigenvector after 
normalization, they did not need to be normalized again 
during fusion. The network (referred to as TFNet) devel-
oped in this study is composed of three parts: the first 
performs high-level feature extraction, the second gen-
erates the low-level feature description, and the third 
applies the fusion process. The mural images input into 

Table 1  VGGNet model

Layer Size Filter Stride Dropout

Input 224 × 224 × 3

Conv1 224 × 224 × 64 3 × 3 × 64 × 2 1

MaxPool1 112 × 112 × 64 2 × 2 2

Conv2 112 × 112 × 128 3 × 3 × 128 × 2 1

MaxPool2 56 × 56 × 128 2 × 2 2

Conv3 56 × 56 × 256 3 × 3 × 256 × 3 1

MaxPool3 28 × 28 × 256 2 × 2 2

Conv4 28 × 28 × 512 3 × 3 × 512 × 3 1

MaxPool4 14 × 14 × 512 2 × 2 2

Conv5 14 × 14 × 512 3 × 3 × 512 × 3 1

MaxPool5 7 × 7 × 512 2 × 2 2

Fc6 4096 0.5

Fc7 4096 0.5

Softmax 1000

Fig. 1  Performance comparison for two types of convolution kernels: 
a 3 × 3 filter; b 5 × 5 filter
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the model have dimensions of 224 × 224. The different 
parts of the network are detailed as follows:

(1)	 High-level feature extraction. The high-level fea-
tures were extracted as the 4096-dimensional fea-
tures obtained from the last FC layer of VGG-16 by 
inputting mural images into the pretrained network 
and fine-tuning the weights of the two FC layers 
while leaving the weights of the five convolution 
blocks unchanged (there are 13 convolutional layers 
in total, where the size of each convolution kernel is 
3 × 3; the numbers of small convolution blocks con-
tained in each main convolution block are 2, 2, 3, 3, 
and 3, in sequence, and the numbers of convolution 
kernels for each convolution are 64, 128, 256, 512, 
and 512, respectively).

(2)	 Low-level feature extraction. The color histogram 
and LBP texture histogram were used to obtain 
512-dimensional low-level features.

(3)	 Feature fusion. The features at both levels were 
concatenated to form a 4608-dimensional feature 
descriptor for mural classification.

(4)	 Other details. Based on references [15, 24, 25], three 
learning rates, i.e., 0.01, 0.001 and 0.0001, were set 
for use with the stochastic gradient descent (SGD) 
optimizer and the Adam optimizer on the train-
ing set (six experiments in total). Then, the models 
trained with each combination of a particular learn-
ing rate and a particular optimizer were tested on 
the test data, and the results were compared. There-
fore, on the basis of the dataset used in this study, 
we concluded that the classification effect of the 
VGGNet model was optimal when the Adam opti-
mizer was employed and the learning rate was set 

to 0.001. The classifier was chosen to be an SVM 
classifier created using the LIBSVM toolkit with 
the default parameters. An SVM is a binary model. 
However, eight classes were considered in the 
developed classification model for mural images. 
Generally, there are three possible methods of con-
structing classifiers, i.e., one-to-one, one-to-multi-
ple, and hierarchical. In this study, the one-to-one 
construction approach was selected in the LIBSVM 
toolkit, and in accordance with this method, a clas-
sifier was constructed between each pair of classes, 
resulting in a total of k(k-1)/2 classifiers. For the 
classification of unknown data, the data obtained 
based on these k(k-1)/2 classifiers were analyzed, 
and the results that appeared most frequently were 
taken as the final outcomes. Based on compari-
sons among a linear function kernel, a polynomial 
function kernel and a Gaussian radial basis func-
tion (RBF) kernel, the Gaussian kernel was chosen 
as the kernel function in this study. After the ker-
nel function was determined, the gamma value was 
set to 0.01, 0.001 and 1/(number of features) [26] to 
conduct experiments. The best effect was obtained 
when the gamma value was set to 1/(number of fea-
tures); thus, the kernel parameters were determined 
with this setting.

Description of the algorithms for mural classification
The flowchart for the classification of mural images 
using TFNet, as shown in Fig. 3, comprises the following 
algorithms.

Algorithm 1. Preprocessing.

Fig. 2  Overall framework of the mural classification network
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Input: the sample set Inputset; the number of samples 
N with a division ratio of r;

Output: the training set Trainset and the test set 
Testset.

(1)	 DataSetEnhance(Inputset);
(2)	 For each image contained in Inputset.
(3)	 Dataset ← getEnhancedSet(Inputset); /*add the 

image data in Inputset into Dataset*/
(4)	 End for.
(5)	 Trainset, Testset ← getPartitionedSet(Dataset, N, r); 

/*add N*r images in Dataset into Trainset and add 
the remaining N*(1-r) images into Testset*/

Algorithm 2. Feature extraction.
Input: the sample set Sample;
Output: the image features Fset.

(1)	 FeatureExtraction(Sample);
(2)	 For each image contained in Sample
(3)	 Lset ← getLowFeatures(Sample); /*extract the low-

level features of the Sample images into the set 
Lset*/

(4)	 Hset ← getHighFeatures(Sample); /*extract the 
high-level features of the Sample images into the set 
Hset*/

(5)	 Fset ← getFeatures(Lset, Hset); /*fuse Lset with Hset 
and add the results into Fset as the feature descrip-
tor for the current image*/

(6)	 End for

Algorithm 3. Mural training.
Input: the training set Trainset;
Output: the classification model Model.

(1)	 ModelTrain(Trainset);

(2)	 TrainF ← FeatureExtraction(Trainset); /*add the 
image features in Trainset into TrainF */

(3)	 Model ← getFinetunedModel(Fset, Pre); /*add the 
fine-tuned pretrained model Pre into Model*/

Algorithm 4. Mural testing.
Input: the test dataset Testset, the classification model 

Model;
Output: classification precision rate Prec.

(1)	 ModelTest(Testset);
(2)	 TestF ← FeatureExtraction(Testset) /*add the image 

features in Testset into TrainF*/
(3)	 Prec ← Model(TestF); /*add the prediction out-

comes of the model into Prec*/

Experimental environment and experimental design
The experiments were performed on a PC running Win-
dows 10 with an Intel Core i7-8750H CPU, a GTX 1070 
GPU, 8 GB of memory and the Python-based TensorFlow 
deep learning framework.

The raw materials in this study were all obtained from 
artistic images scanned from the Tomb Murals of the 
Chinese Silk Road and the Complete Collection of Chi-
na’s Dunhuang Grotto Murals, spanning the Han, Tang, 
Sui, and Ming dynasties. These murals reflect a variety of 
subjects, such as stories, apparel and sutras, and exhibit 
diverse images and styles. Typical images of secular peo-
ple, plants, bodhisattvas, animals, buildings, auspicious 
clouds, disciples of Buddha and Buddha himself were 
selected for the experiments. After severely damaged 
images were excluded, the numbers of images remain-
ing in each of the above categories were 675, 227, 277, 
263, 153, 122, 174 and 153, respectively. In total, 65% 
of the images were randomly selected from among the 

Fig. 3  Overall flowchart of mural classification
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various types of samples for use as the training set, and 
the remaining 35% of the images were used as the test 
set (see Table  2; the sample distribution shown in this 
table was used in all experiments in this study, except for 
sampling with replacement using the bootstrap method). 
However, the deep model adopted in this study was prone 
to overfitting when the sample size was small. Therefore, 
dataset augmentation was performed on the training set, 
including (1) changes to the image brightness; (2) trans-
formation of the images into horizontal and vertical 
mirror images; and (3) background noise enhancement, 
mainly with Gaussian noise and salt-and-pepper noise. 
After these manipulations, the number of samples in the 
training set was increased by sixfold. Examples of the 
images after augmentation are shown in Fig. 4.

Three indicators (i.e., the precision rate, recall rate and 
F1-score) that are commonly used in image classification 
were used for the comprehensive performance evaluation 
of the proposed algorithms. The specific definitions of 
each indicator are as follows.

where TP represents the number of true positives (cor-
rect predictions), TN represents the number of true neg-
atives (correct predictions), FP represents the number of 
false positives (incorrect predictions), FN represents the 
number of false negatives (incorrect predictions), and 
Mural_P, Mural_R and Mural_F1 represent the preci-
sion rate, recall rate and F1-score, respectively, of mural 
classification.

(5)Mural_P =
TP

TP + FP

(6)Mural_R =
TP

TP + FN

(7)Mural_F1 =
2×Mural_P ×Mural_R

Mural_P +Mural_R

Results and discussion
Comparison with different selected features
To validate the effectiveness of the low-level feature-
fusion method proposed in this study, we performed 
comparisons in terms of the precision rate, recall rate and 
F1-score with a method involving only the 512-dimen-
sional low-level features and a method involving only the 
4096-dimensional high-level features, and the results are 
shown in Fig. 5.

Compared with the methods involving only the low-
level features and only the high-level features, the fusion 
method proposed in this study yielded increases in the 
precision rate, recall rate and F1-score by 34.9, 34.74 and 
34.03% and by 9.36, 8.72 and 8.33%, respectively. The 
reason for these improvements is that the fusion of low- 
and high-level features enables the extracted features not 
only to capture the main features of murals, i.e., color and 
texture, but also to mine the deep semantics implied in 
the images. Accordingly, our fused descriptor can more 
completely express the features of murals, thereby help-
ing achieve better classification performance.

Comparison with traditional CNNs
For this study, the traditional AlexNet [27], VGGNet, 
GoogLeNet [28] and ResNet [29] transfer learning mod-
els were selected for comparison and to analyze the 
change in the precision rate in various experiments. In 
addition, the precision rate of the VGGNet-RCC model, 
which was obtained by replacing the color histogram 
used in this study with the state-of-the-art regional color 
co-occurrence (RCC) feature descriptor [30], was also 
considered. According to this model, an image is first 
segmented into nonintersecting regions. Then, a color 
co-occurrence matrix is constructed for each adjacent 
region, and finally, the constructed matrixes are summed 
and standardized to obtain features. In this experiment, 
the size of the codebook was set to 128. Table 3 compares 
the results in terms of the precision rate, recall rate, and 
F1-score, and Fig.  6 compares the precision rate curves 
showing the evolution with the number of iterations. 
The x-coordinate represents the number of iterations, 
and the y-coordinate is the precision rate. The red, blue, 
pink, green and navy lines represent the curves for the 
fine-tuned VGGNet, AlexNet, GoogLeNet, ResNet and 
VGGNet-RCC models, respectively. 

As shown in Table 3, the model proposed in this study 
achieved the highest average precision rate, recall rate 
and F1-score of 80.64, 78.06 and 78.63%, respectively. 
The proposed model showed 5.46, 4, 6.99, 6.49 and 
20.31% improvements in the precision rate compared 
with the AlexNet-F, VGGNet-F, GoogLeNet, ResNet-F, 
and VGGNet-RCC models, respectively. The main reason 

Table 2  Numbers of murals selected for the experiments

Category Training set Test set

Buddha 99 54

Bodhisattva 180 97

Buddhist disciple 113 61

Secular person 438 237

Animal 170 93

Plant 147 80

Building 99 54

Auspicious cloud 78 44

Total 1325 720
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for this improvement lies in the fact that the high-level 
features of the VGGNet model are the most suitable for 
representing the mural images considered in this study. 
A greater or lesser depth is not conducive to full repre-
sentation. As shown in Fig. 6, the model proposed in this 
study not only achieved the highest precision rate but 
also was the fastest to converge. Moreover, the proposed 
model was more stable than the VGGNet model, which 
had the highest precision rate among the transfer learn-
ing models considered for comparison, because it inte-
grates both low- and high-level mural features to better 
simulate the feature representation of human vision. In 
addition, the use of an SVM classifier also contributed to 

the increased stability of the model given the relatively 
small size of the image set used in this study. The overall 
precision rate of the VGGNet-RCC model was the lowest 
among the tested models. Although this model achieved 
the highest precision rate for murals in the Buddhist dis-
ciple and building categories, its precision rate for murals 
depicting secular people was the lowest. The reason for 
this result might be that the VGGNet-RCC model, which 
considers color spatiality, is suitable for extracting the 
features of single objects, such as those in the Buddhist 
disciple and building categories, but its adaptability for 
multiple-element categories, such as the secular person 
category, is poor.

Fig. 4  Examples of mural images
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Comparison with other improved CNNs
The proposed model was also compared with the 
models developed by Mehdipour [15], P. Cheng [25], 
Lee [16], G. Cheng [31] and Lin [32]. In the study by 
Mehdipour [15], both the training set and test set were 
augmented, after which fine-tuned VGGNet and Goog-
LeNet models were used as the optimal classifiers for 
plant classification. In the study by P. Cheng [25], the 
FC layers of CaffeNet and VGGNet were retrained on 
the training set after pretraining on the 2012 ILSVRC 
dataset. Lee et al. [16] proposed an automatic high-level 
feature classification method based on the extraction of 
64-dimensional texture features, including histogram 

and texture matrixes, and 7-dimensional shape fea-
tures, including roundness and curvature; this method 
was used in combination with random forest classi-
fication. In the work of G. Cheng, the bag of convolu-
tional features (BoCF) method was used to generate 
visual words from deep convolutional features, and off-
the-shelf CNNs were used for classification [31]. Lin’s 
model was developed based on a new deep neural net-
work architecture in which color features were added to 
the first FC layer of a 5-layer CNN for multilabel image 
annotation [32]. Table  4 compares the results of these 
works in terms of the precision rates, recall rates, and 
F1-scores in various experiments, and Fig. 7 compares 
the precision rates, recall rates, and F1-scores for mural 
classification. 

As shown in Table 4, the model proposed in this study 
achieved 2.22, 6.78, 3, 8.61 and 4.33% improvements 
in the maximum precision rate over the Mehdipour, 
P. Cheng, Lee, G. Cheng and Lin models, respectively. 
Moreover, although the precision rate, recall rate and 
F1-score of the proposed model were low for the Bud-
dhist disciple category, it achieved high precision rates, 
recall rates, and F1-scores for most categories. As seen 
from this table in combination with Fig. 7, the precision 
rate, recall rate and F1-score of the model proposed in 
this study for the classification of mural images generally 
reached the highest values. Collectively, the above data 

Fig. 5  Performance comparison among methods involving different selected features

Table 3  Comparisons with traditional algorithms in terms 
of the precision rate, recall rate and F1-score 

The maximum value of precision rate, recall rate and F1-score in all models are 
in italics

Network Precision rate/% Recall rate/% F1-score/%

TFNet 80.64 78.06 78.63

AlexNet-F 75.18 74.65 74.91

VGGNet-F 76.64 76.59 76.61

GoogLeNet-F 73.65 72.23 72.93

ResNet-F 74.51 74.42 74.46

VGGNet-RCC​ 60.33 58.71 59.51
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sufficiently indicate the effectiveness of the proposed 
model for mural classification, mainly by virtue of the 
adoption of transfer learning to avoid overfitting when 
extracting high-level features. Moreover, the mural infor-
mation can be fully represented by combining high- and 
low-level features, making the algorithm proposed in this 
study more stable and more robust than other models.

Comparison with traditional methods
For the mural dataset constructed in this study, the tradi-
tional SIFT feature descriptor, the histogram of ordered 
gradients (HOG) feature descriptor and a traditional 
backpropagation (BP) neural network were selected for 
comparative experiments. The color and texture fea-
tures used in this study were also extracted using these 
traditional methods. A comparison of the corresponding 
results is summarized in Table  5, in which CL denotes 
the fused vector of both types of features. A bar graph 
comparing the classification performance of the different 
methods is shown in Fig. 8. 

As shown in Table  5 and Fig.  8, although the size of 
the dataset used in this study was relatively small, the 
model developed in this study achieved a much higher 
identification rate than the traditional methods did, 
mainly because the features extracted using these tradi-
tional methods are low-level features extracted by human 

beings, making it difficult for them to truly represent the 
image semantics and resulting in a low generalization 
ability. Furthermore, the overall classification precision 
rates of the traditional methods were low. The primary 
reasons for these results include the following: 1) the 
numbers of samples in the different categories in the 
test dataset were imbalanced, and 2) augmentation was 
applied to the dataset as a whole, rather than specifically 
for rare samples, which might present certain challenges 
for the traditional methods. Nevertheless, compared with 
the single features extracted via traditional methods, a 
CNN not only can directly and automatically learn fea-
tures from the image pixels in both shallower and deeper 
layers but also can consider neighboring pixel values 
within the receptive field. Therefore, the classification 
performance of the model proposed in this study is much 
better than that of conventional methods. Furthermore, 
the proposed model also fuses high- and low-level mural 
features. As a result, the representation capability of our 
final descriptor is stronger than that of low-level features 
alone. The adoption of transfer learning also avoids the 
risk of overfitting arising from training the model directly 
and thus is beneficial for the classification of murals.

Fig. 6  Curves showing the evolution of the precision rate of each algorithm
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Effectiveness of the proposed method
The use of different datasets is a persuasive approach 
for validating the adaptability of a model. We used two 
painting datasets, i.e., PT [33] and DH660 [34], to ver-
ify the effectiveness and adaptability of the proposed 
method.

PT consists of PT91 and PT13. The PT91 dataset con-
tains 4266 images contributed by 91 artists [33], with 
31–56 works per artist. Because these images belong to 
various categories and each category consists of a rela-
tively small number of images, classification is difficult. 
In our experiment, 2275 images were used to consti-
tute the training set, with the remaining 1991 images 
constituting the test set. Figure 9 shows some examples 
from the PT91 dataset. The PT13 dataset contains 2338 
images associated with 13 artistic styles. In our experi-
ment, 1250 images were used for training, with the 
remaining 1088 images used for testing. Some exam-
ples from this dataset are shown in Fig. 10.

The DH660 dataset contains 660 images of flying 
apsaras created during three different periods [34], 
with an average of 220 images from each period. In this 
study, half of the images were used for training, and the 
other half were used for testing. Figure 11 shows some 
examples of these images.

These datasets are different in scale and therefore 
required different training times. To maintain consist-
ency in this study, we performed 30 rounds of training for 
each dataset. A comparison of the results is summarized 
in Table 6.

As shown in Table  6, the precision rates of the 
method proposed in this study on PT91, PT13 and 
DH660 were 60.01, 66.93, and 96.56%, respectively, 
being 6.91, 4.73 and 5.32% higher than those reported 
in the literature (53.10% and 62.2% for PT91 and PT13, 
respectively [30], and 91.24% for DH660 [34]). As seen 
from this table in combination with the results shown 
in Fig.  12, the proposed model exhibited excellent 

Table 4  Classification results of various models 

The maximum value of precision rate, recall rate and F1-score for each class of all models are in italics

Category Index Mehdipour P. Cheng Lee G. Cheng Lin TFNet

Buddha Precision 59.62 50.00 59.62 53.70 61.54 72.22

Recall rate 57.39 47.62 58.17 51.95 59.22 70.18

F1-score 58.48 48.78 58.89 52.81 60.36 71.19

Bodhisattva Precision 78.43 74.23 73.53 73.20 74.51 81.44

Recall rate 77.10 72.98 73.02 71.49 72.16 80.04

F1-score 77.76 73.60 73.27 72.33 73.32 80.73

Disciple Precision 51.67 47.54 50.00 44.26 50.00 45.90

Recall rate 49.09 46.56 49.12 42.10 48.55 45.01

F1-score 50.35 47.04 49.56 43.15 49.26 45.45

Secular person Precision 90.57 86.08 89.06 87.76 87.55 91.14

Recall rate 88.72 85.43 87.09 85.48 84.99 89.57

F1-score 89.64 85.75 88.06 86.60 86.25 90.35

Animal Precision 64.52 67.74 67.74 56.99 66.67 70.97

Recall rate 63.06 64.28 66.53 56.04 64.30 69.15

F1-score 63.78 65.96 67.13 56.51 65.46 70.05

Plant Precision 72.15 51.25 65.82 57.50 67.09 61.25

Recall rate 70.18 50.25 63.89 57.01 66.44 60.98

F1-score 71.15 50.75 64.84 57.25 66.76 61.11

Building Precision 69.09 74.07 72.73 68.52 69.09 83.33

Recall rate 68.22 72.55 71.02 67.77 68.05 82.83

F1-score 68.65 73.30 71.86 68.14 68.57 83.08

Auspicious cloud Precision 84.78 84.09 93.48 72.73 84.78 90.91

Recall rate 82.51 82.11 91.45 71.93 84.00 90.04

F1-score 83.63 83.09 92.45 72.33 84.39 90.47

Average Precision 78.42 73.86 77.64 72.03 76.31 80.64

Recall rate 76.60 71.25 75.80 69.86 74.73 78.06

F1-score 77.05 71.91 76.28 70.39 75.08 78.63
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classification performance on these different datasets. 
On the one hand, the fusion of the low- and high-level 
features is suitable for expressing the characteristics 
of the mural dataset used in this study (noticeably, the 
proposed model outperformed the models presented in 
[33] and [34]); on the other hand, the application of the 
low-level features in the error propagation for the high-
level features in this study enables high integration of 
high- and low-level visual characteristics to fully simu-
late the human visual system. Accordingly, these results 
validate the effectiveness and further prove the adapt-
ability of our model.

Robustness of the proposed model
To verify the robustness of the proposed model, we used 
the bootstrap method to perform idealized sampling with 
replacement. Usually, this method is used to evaluate 
the generalization errors of a model. Traditional boot-
strapping requires a large number of sampling instances 
and targets traditional machine learning with a small 
sample size. By contrast, deep learning methods often 

use large volumes of data, and the models are complex. 
Furthermore, deep learning requires extensive time and 
resources; specifically, the time required for one iteration 
is approximately 1 h. Therefore, a large number of sam-
pling instances is not feasible for deep learning. In this 
study, the number of sampling instances was set to 10, 
considering the limitations of both resources and time. 
Equation (9) is the bootstrapping formula for calculating 
the precision rate of this model under an infinite number 
of sampling instances:

where TrueP represents the precision rate on the test 
set, TotalP represents the precision rate on all samples, 
and b is the number of sampling instances (equal to 10 
here). Table 7 shows the outcomes based on 10 sampling 
instances (the training set was not subjected to data aug-
mentation in this experiment).

As shown in Table 7, at a confidence level of 0.95, the 
bootstrap confidence interval is (82.02, 82.73), which 

(9)

FinalP =
1

b

b
∑

i=1

(0.632 ∗ TrueP + 0.368 ∗ TotalP)

Fig. 7  Performance comparison of various classification models
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indicates that the results obtained based on the method 
proposed in this study deviate from the precision rate in 
the ideal state. This gap is primarily due to the imbalance 
in the dataset used in this study. The volume of data in 
the Buddha category represented approximately 1/3 of 
the total volume of eight categories, which led to insuf-
ficient learning for the other categories, thereby decreas-
ing the precision rate. Methods of addressing such data 
imbalance to further improve the performance of the 
model may be an important direction for future studies.

Conclusions
This study proposes the idea of applying transfer learning 
and feature fusion in the classification of mural images 
to solve the overfitting problem that can easily occur 
when training deep models on small samples. First, due 
to the small size of the mural dataset used in this study, 
data augmentation was performed to expand the dataset. 
Next, high- and low-level image features were extracted 
to construct a joint feature descriptor for each mural, 
thereby enriching the representation of the mural fea-
tures. Then, transfer learning was adopted to fine-tune a 
pretrained VGGNet model on the mural dataset, making 
the model more suitable for extracting mural features. 
Moreover, we effectively solved the overfitting problem 

Table 5  Classification performance of the model proposed in this study compared with traditional algorithms

The maximum value of precision rate, recall rate and F1-score for each class of all models are in italics

CL: fused vector of color and texture features

Category Index BP HOG SIFT LBP COLOR CL TFNet

Buddha Precision 56.44 39.66 47.14 51.61 42.65 62.00 72.22

Recall rate 55.23 37.19 46.52 48.49 40.92 61.06 70.18

F1-score 55.83 38.39 46.83 50.00 41.77 61.53 71.19

Bodhisattva Precision 56.52 37.61 43.87 49.78 39.37 37.25 81.44

Recall rate 55.01 35.62 41.99 48.03 37.67 35.08 80.04

F1-score 55.75 36.59 42.91 48.89 38.50 36.13 80.73

Disciple Precision 50.69 27.63 31.93 42.98 40.57 38.20 45.90

Recall rate 48.69 27.00 30.46 40.91 37.68 37.01 45.01

F1-score 49.67 27.31 31.18 41.92 39.07 37.60 45.45

Secular person Precision 63.16 25.45 42.90 25.97 39.80 50.90 91.14

Recall rate 61.54 23.69 42.11 23.92 37.56 49.09 89.57

F1-score 62.34 24.54 42.50 24.90 38.65 49.98 90.35

Animal Precision 49.31 47.35 26.36 45.63 37.08 40.49 70.97

Recall rate 48.92 45.66 25.10 43.99 35.72 38.88 69.15

F1-score 49.11 46.49 25.71 44.79 36.39 39.67 70.05

Plant Precision 60.57 34.68 30.88 47.01 29.25 40.23 61.25

Recall rate 58.46 32.17 28.55 46.03 28.11 38.93 60.98

F1-score 59.50 33.38 29.67 46.51 28.67 39.57 61.11

Building Precision 56.31 11.65 35.81 42.78 31.80 71.11 83.33

Recall rate 55.22 10.01 33.56 39.86 29.53 67.99 82.83

F1-score 55.76 10.77 34.65 41.27 30.62 69.52 83.08

Auspicious cloud Precision 41.41 43.10 29.17 47.26 27.81 30.25 90.91

Recall rate 40.03 42.14 27.60 45.62 26.59 28.96 90.04

F1-score 40.71 42.61 28.36 46.43 27.19 29.59 90.47

Average Precision 54.61 33.68 35.96 43.66 36.04 45.74 80.64

Recall rate 53.29 31.84 34.06 41.59 35.13 43.52 78.06

F1-score 53.94 32.73 34.98 42.60 35.58 44.60 78.63
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Fig. 8  Classification performance of the model developed in this study compared with traditional algorithms

Fig. 9  Some example images from the PT91 dataset
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that is prone to occur in deep models trained on small 
samples to improve the generalization ability of the 
model. Finally, the precision rate, recall rate and F1-score 
of the model proposed in this study reached 80.64, 78.06 
and 78.63%, respectively, through suitable adjustment 
of the parameters. The classification model proposed in 

this study achieved a higher recognition rate than other 
classification models and significantly improved classifi-
cation performance, thus validating its effectiveness and 
motivating follow-up research.

However, there are still some limitations of this 
study. Due to the large number of parameters of the 

Fig. 10  Some example images from the PT13 dataset

Fig. 11  Some example images from the DH660 dataset
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VGGNet model, the computation is onerous. There-
fore, in future studies, first, the network structure can 
be optimized by reducing the number of model param-
eters to find a rapid and effective classification model 
for mural images. Second, during transfer learning, if 
the transfer learning technique is incorrectly applied 
or a proper validation strategy is not enacted, the 
resulting model cannot achieve a satisfactory effect; 

accordingly, multiple challenges remain in the appli-
cation of transfer learning. The negative transfer phe-
nomenon can reduce the recognition rate of a model 
rather than increasing its capacity. For instance, in the 
cross-field transfer learning performed in this study, 
the size of the target dataset and that of the source 
dataset differed greatly. Errors in the transfer learning 
strategy might still result in overfitting, resulting in a 
decreased precision rate. Therefore, determining how 
to better combine transfer learning with the model 
proposed in this study remains a challenge. Third, 
the numbers of dimensions of the low- and high-level 
mural image features were large, which influenced 
the training time of the proposed network. Therefore, 
effective dimension compression methods should be 
considered in the future.

Table 6  Precision rates, recall rates and  F1-scores 
of the proposed method on different datasets

Dataset Precision Recall F1-score

PT91 60.01 40.12 43.88

PT13 66.93 65.81 65.57

DH660 96.56 96.56 96.55

MuralSet 80.64 78.06 78.63

Fig. 12  Comparison of precision rates on different datasets

Table 7  Classification precision results for  the  proposed model based on  10 sampling instances according 
to the bootstrap method

1 2 3 4 5 6 7 8 9 10 Average

FinalP 82.18 81.18 82.49 82.99 82.54 80.77 82.34 81.79 83.26 82.12 82.14
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Abbreviations
SIFT: Scale-invariant feature transform; SVM: Support vector machine; VGGNet: 
Visual Geometry Group network; DFC: Deep feature classification; CECT: 
Contrast-enhanced computed tomography.
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