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DFS: Dual-branch forward-looking
simulation network for incremental
learning of ancient Chinese characters
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Traditional Chinese ancient character recognition methods often fail to recognize new characters
when working with continuously updated archeological materials. To cope with this ever-changing
data stream, continual Learning becomes the key. Retraining the model using both new and old
categories is a straightforward concept, but it is constrained by memory and data privacy issues.
Currently, many existing approaches use incremental freezing technology, but due to the high
similarity and few samples of ancient Chinese character datasets, typical incremental learning
methods face tremendous challenges in this case. To this end, this paper proposes a forward-looking
simulation network to pre-simulate unknown new categories through virtual sample generation
technology. Specifically, we decouple the network into feature extractors and classifiers and expand
the feature extractor into a dual-branch structure. During the basic training phase, techniques like
Mixup are used to create deep virtual features and virtual datasets, which successfully enhances the
basicmodel’scapacity to represent newcategories.Moreover, L-Selective Loss is proposed to further
optimize the boundaries between categories. And enhance the extraction of identifiable high-level
features between new categories and original categories. Experimental results show that the
proposedmethod can effectively recognize all existing categories on oracle bone script, Yi script, and
Dongba script without saving old category samples. Comparedwith the traditional incremental frozen
framework FACT, the forgetting rate is improved by 2.021%, 0.949%, and 2.552%, respectively.

Open-set adaptive learning1 is a popular issue for current study. Its key
difficulty is how to successfully cope with continually changing and newly
emerging category data. You can break the procedure into three essential
steps, as shown in Fig. 1: (1)Unknown rejection: Themodel needs to reliably
identify samples of known categories and detect unknown categories based
on uncertainty estimation. (2) New category discovery: The unknown
samples found are labeled with new categories. The labeling process can be
performed manually or automatically. (3) Incremental expansion: As new
category samples accumulate, the model expands the classifier through
incremental learning and continuously adjusts to new data.

In the realm of ancient Chinese character recognition, open-set
adaptive learning offers substantial research significance. There are various
sorts of ancient Chinese characters, and existing databases make it difficult
to cover all categories. When dealing with diverse ancient documents,

typical closed-set recognition algorithms generally fail to distinguish
unknown characters, resulting in frequent misrecognition. These unknown
characters include rare, variant, and similar characters. After being gathered
and identified by experts, new glyphs need to be added to the model for
updating and learning. However, upgrading the model with only new class
data will lead to forgetting the old classes2,3. Although teaching existing
classes simultaneously with new classes is an appealing option, this
strategy has apparent drawbacks in terms of memory and privacy. To
tackle this problem, Fei Zhu et al.4 proposed employing local softmax
for classifier calibration, by learning richer, more universal, and
transferable features and separating the training to calibrate the
feature extractor. Kang et al.5 prevented forgetting by limiting the
updating of critical elements while allowing the less important
aspects to change.
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Although there aremany establishedmethods, there are still significant
challenges in the recognition of ancient Chinese characters. First, the
training samples of newancientChinese characters are frequently restricted,
and a small number of new class samples can readily lead to overfitting.
Second, the ancient Chinese character dataset has a lot of similar characters,
making it hard to tell them apart and causing the embedding space to
overlap. Furthermore, there are not many studies on the continuous
recognition of ancient Chinese characters, and the majority of incremental
expansion techniques are mostly used on feature-rich traditional datasets.
Ancient characters contain rich information, and typical feature extraction
methods make it difficult to properly capture their complex features, which
affects the recognition effect.

In recent years, the incremental freezing framework6,7 has become the
key to overcoming the problem of incremental recognition with few sam-
ples. Inspiredby this,wepropose adual-branch forward simulationnetwork
(DFS). In view of the features of simple characters producing complicated
glyphs in ancient Chinese characters, there is a considerable feature con-
nection between the known ancient character dataset and the unknown
ancient character dataset. In the first training stage of DFS, we combine the
virtual dataset and deep virtual features created from known datasets into
model training through a dual-branch structure, thereby keeping the pre-
diction and accommodation capabilities of unknown characters in the
embedding space. Further, we designed the L-Selective Loss to promote the
network to accomplish mutual assistance optimization while extracting
complicated features of virtual samples and original samples, and boost the
recognition capacity of the model. During the incremental learning phase,
when the training dataset only contains new class data, we freeze the feature
extractor parameters and just replace the new class prototypes in the clas-
sifier for classification. The primary contributions of this study can be
summarized as follows:

(1) For the first time, the incremental freezing architecture is used to
continuously learn ancient Chinese characters, effectively addressing
the challenges of open-set text recognition.

(2) A dual-branch simulation network is suggested to enable the initial
model to forecast unknown categories. And in the incremental step,
just a restricted number of new class samples are used to update the
classifier, while yet maintaining good classification results.

(3) Designed the L-Selective Loss to assist in the fitting of virtual features
and encourage the extraction of detailed features.

(4) The results of experiments on oracle bone script, Yi script and
Dongba script datasets shown notable increases in accuracy and
forgetting rates.

Related work
Incremental learning
Incremental learning(IL) aims to update the model when data comes in
the form of streaming, without requiring retraining using the entire
previous dataset. Research points out that in IL, a fatal problem occurs
when updating the model with new classes, namely catastrophic
forgetting8,9. To address the issue, current research is roughly divided into
three categories: parameter regularization, knowledge distillation, and
data playback. Parameter regularization10–13 emphasizes constraints on
important parameters. James Kirkpatrick et al.10 propose to reduce for-
getting by restricting important parameter variations that favor the
learning of old tasks. Knowledge distillation14–17 prevents forgetting by
ensuring that the outputs of old and new models are consistent on the
same data. And this method has become the basic module of many
incremental learningmethods because of its effectiveness. Data replay18–20

focuses on preserving a small portion of old class data, and using it with
new class data formodel updates. For example, after completing each task,
the iCaRL18 method saves a small number of samples for each category,
which are used for subsequent model training.

In the above IL method, new class data is used to adjust model para-
meters in the incremental phase.When new class data is limited, overfitting
problems are prone to occur, leading to a significant decrease in the
recognition performance of the model. As a result, research in recent years
has turned to focus on Few-shot class-incremental learning (FSCIL), which
aims to solve IL tasks in situations of insufficient data. Currently, FSCIL
learning methods can be roughly divided into two categories: The first
category is based on data augmentation21–23, which alleviates the few-sample
problem by increasing the diversity of existing data. The other category is
based on metric learning7,24–26, which classifies objects in the embedding
space by calculating the similarity or distance between samples in the
support set and the query set. In terms of applications, FSCIL has achieved
remarkable results in various fields of computer vision, such as image

Fig. 1 | Continual learning process diagram.
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classification and target detection. However, ancient text recognition, as a
typical few-shot recognition task, has not been studied in IL.

Open-set text recognition techniques
Open-set text recognition technology is designed to address the challenges
of closed-set text recognition, focusing on processing new classes and new
data27. Research in this field mainly focuses on the following two issues: (1)
New class detection: The model is required not only to accurately classify
known classes but also to effectively detect unknown classes. (2) New class
recognition: After detecting new classes, the model should be quickly
adjusted to recognize these new character classes.

In recent years researchers have mainly focused on the second pro-
blem, while most of the research work has concentrated on zero-shot text
recognition. These methods can be divided into two categories: One is the
classifier-based approach10,28–31, which assigns the input data to known and
unknown categories by learning generic classifiers in the training phase. To
generalize to the unknown category, this type of approach requires shared
features or attributes between the known and unknown categories. The
other is the instance-based approach32–36, which performs classification by
comparing the similarity between test samples and the categories, both
known and unknown. However, the real world is dynamic, many applica-
tions receive data in the form of manifolds, and new unknown categories
will gradually emerge. This makes traditional zero-shot text recognition
methods difficult to adapt to. In addition, the current IL framework has not
been effectively applied in the field of open-set text recognition.

Methods
Problem formulation
In incremental learning, a model faces the sequence of consecutive tasks T0,
T1,…,Tt. whereT0 represents the base stage, in this stage, there is a training
datasetD0

train and a test datasetD
0
test. The training dataset containsn training

samples from the base stage, each sample represented by an image xi and its
corresponding label yi. For T1, T2, …, Tt, representing incremental stage
tasks, the training dataset for the t th stage is denoted asDt

train, containing nt
training samples. Each sample’s image is denoted as xj, with the corre-
sponding label yj. It is important to note that the label space of the training
dataset between different stages has no intersection. Specifically, the label
space Ct

train of the training set for Tt does not include the label space of the
training dataset from other stages. However, the label space of the test
dataset between different stages is inclusive. More precisely, the test dataset
for the subsequent stage should include the test datasets from all previous
stages, i.e., the test label space for Tt is Ct

test ¼ Ct
test ∪Ct�1

test ∪ . . . ∪C0
test.

Throughout the learning process, aim to retain knowledge from pre-
vious tasks as each task is learned. In particular, the number of samples in
ancient Chinese character recognition is limited, and the basic stage usually
has sufficient training samples, while the subsequent incremental stages can
only utilize a limited number of samples (i.e., few-shot incremental learn-
ing). Therefore, the datasets for each incremental stage are organized in an
N-way, K-shot format, where each task comprises N categories, and each
category contains K training images.

System overview
To address the challenge of the restricted dataset in the ancient Chinese
character incremental recognition, some visionary work7,24recommends an
incremental freezing framework. This framework adopts the prototype
network37 that decouples the classifier from the feature extractor.During the
base training stage, the method reserves embedding space for potential new
data in the future by introducing virtual prototypes. Subsequently, the
model is optimized by minimizing the cross-entropy loss. Assuming the
model fn consists of the classifier ge and the feature extractor fe, the model
parameters are continuously optimized through the following formula:

Lce ¼ Fce geð f eðQ; θÞ;WTÞ; yq
� �

ð1Þ

where Fce represents the cross-entropy loss function
38, yq denotes the true

label corresponding to the input image,Q represents a training sample from
the base training dataset D0

train, θ represents the parameters of the feature
extractor, andWT represents the weights of the classifier.

After the completion of the base stage, the backbone network remains
unchanged, and each incremental stage only extends the classifier. Specifi-
cally, the classifierweights are parameterizedby the average embedding (i.e.,
prototype) for each class. Assuming the weights of the classifier ge are
represented as follows:

Weightgn ¼ ½w0;w1;w3 . . . . . .wn;wnþ1 . . . . . . rmwt � ð2Þ

where,w0 town represents the prototype representation of the classes in the
base training samples, andwn towt represents the prototype representation
of the newly added classes after the incremental stage. The prototype
representation is calculated as follows:

ptc ¼
1
ntc

Xntc
i¼1

feðQi
c; θÞ ð3Þ

where ptc represents the prototype representation, fe represents the feature
extractor, Qc represents the current input sample Q belongs to category c,
and θ represents the parameter weight

At each task stage,wemeasure the similarity between the input samples
and the prototype representations of each category, and select the most
similar category as the prediction result with the formula expressed as
follows:

Qc ¼ argmax ge rtc �Weightgn

� �� �
; ð4Þ

ge ¼
rtc �Weightgn

ðk rtc k � k Weightgn kÞ
ð5Þ

where gn represents the cosine classifier, and rtc represents the feature
representation of the current input sample obtained through the feature
extractor.

However, there are several challenges with incremental recognizing
ancient characters simply relying on the prototype network frozen in the
incremental learning stage. First, the phenomenon of similar characters in
the ancient character dataset is relatively serious, resulting in a decrease in
model recognition. Also, in incremental learning, the frozen network
parameters and the approachof replacing the virtual prototypewith the new
class prototype may lead the basic feature extractor to be unable to ade-
quately represent the new class features, consequently affecting the classi-
fication performance. To overcome these issues, we propose an improved
solution: expand the feature extractor to a dual-branch structure, as shown
in Figure 2. The left branch creates virtual features and calculates the loss
through the FFMmodule, while the right branch generates virtual data for
training based on the CAM module. Although the two branches have dif-
ferent objectives, they share the same parameters and optimize the model
together.WepresentL-Selective Loss as the goal function to further improve
the distribution in the embedding space. During the incremental training
stage, the feature extractor parameters remain frozen and the back-
propagation process is no longer performed. Instead, the right branch that
hasnot passed through theCAMmodule is directly used to extract newclass
features and generate class prototypes to replace the virtual prototypes in the
classifier. Finally, classification is performed based on the cosine similarity
with the class prototype. The specific method will be described in detail
in sections “Dual-branch forward-looking simulation network” and
“L-Selective Loss: combining L-Softmax and selective triplet loss”.
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Dual-branch forward-looking simulation network
In incremental learning tasks, the model must continuously be exposed to
new categories while maintaining a consistent recognition capacity for
previously learned categories. To this purpose, we propose an innovative
dual-branch feature extractor design to enhance the model’s prediction
ability on unknown categories. This design is based on the Manifold
Mixup39 and Mixup40 methods, which use virtual prototypes for label
assignment to push themodel to optimize towards the feature space of new
categories.

The traditionalManifoldMixuporMixupmethod is trainedbymixing
samples and averaging weighted labels. It seeks to enhance the model’s
adaptability to data fromold categories (such as deformed fonts, noise, etc.),
thereby improving the model’s generalization capacity. However, this label
weighting mechanism has limitations in incremental learning tasks.
Although weighted labels can expand the feature space of old categories,
they fail to provide sufficient embedding space or feature update direction
for new categories. As a result, the feature learning of new categories is
restricted and “suppressed” in the feature space of old categories.

In contrast, our method is innovative and based on traditional meth-
ods. We propose a dual-branch feature extractor structure. The left branch
generates deep virtual features based on theManifoldMixupmethod, while
the right branch uses a Mixup-like method to generate the original virtual
dataset. By calculating the cosine similarity with the virtual prototype
ensures that the mixed features can be more biased towards the learning of

new categories, thereby providing sufficient feature embedding space for
new categories, an algorithmic process as Algorithm 1.

Algorithm 1. Basic training phase algorithm flow
Require: Basic training stage data D0

train
Ensure: Optimized feature extractor fe and classifier ge
1: Input: Training samples (xi, yi) and (xj, yj)
2: Use the shared feature extractor fe to extract feature representations hi
and hj

3: Left Branch:
4: Use Eq. (6) to get the mixed virtual features hmix of hi and hj
5: Input hmix into the subsequent network to generate the virtual feature
logitleft_mix

6: Use Eq. (6) to get the virtual label yleft_mix

7: Input hi and hj into the network to generate the original features
logitleft_orig

8: Use Eq. (6) to get the virtual label yorig
9: Right Branch:
10: Use Eq. (10) to get the reconstructed image xnew
11: Use Eq. (11) to get the virtual data xmix

12: Extract feature representation of virtual data using shared feature
extractor logitright_mix

13: Use Eq. (13) to get the virtual label yright_mix

14: Loss calculation:

Fig. 2 | The overall framework structure of the model.
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15: Using Eq. (26), calculate the total loss function Ltotal
16: Update the parameters of the feature extractor fe and the classifier ge

through backpropagation
return Optimized feature extractor fe and classifier ge
As shown in Fig. 2, the model adopts a dual-branch feature extractor

structurewith sharedparameters.The left branch and the right branch share
the same set of feature extractor parameters.However, each branch adopts a
different data-mixing strategy to generate different feature representations.

Specifically, the left branch mixes the hidden features through the
ManifoldMixupmethod to generate deep virtual features. Given two input
samples (x1, y1) and (x2, y2). First, the feature extractor is used to obtain their
feature representations h1 and h2 on Layer2 hidden layer. Then, the mixing
ratio of the two features is controlled by the hyperparameter λ sampled from
the Beta distribution, thereby obtaining the mixed feature hmix:

hmix ¼ λh1 þ ð1� λÞh2 ð6Þ

The feature representation logitmix obtained by the subsequent network
layer of themixed featurehmixwill be calculated by cosine similaritywith the
virtual prototype pi in the classifier, so as to assign the mixed feature to the
most similar category label:

cosine similarity ðlogitmix; piÞ ¼
logitmix � pi

k logitmix kk pi k
ð7Þ

yleft mix ¼ argmax
i

cosine similarityðlogitmix; piÞ
� �

ð8Þ

Simultaneously, we will include the old class characteristics in the ensuing
network layers for loss computation to preserve the previous class recog-
nition. Two components make up the left branch’s loss function: the loss
determinedby theoriginal featurehi and the label yi, and the loss determined
by the mixed feature hmix and the label ymix. Finally, the total loss of the left
branch is the weighted sum of these two parts. The formula is expressed as

Lleft ¼ Lleft orig þ Lleft mix ð9Þ

The right branchuses aMixup-likemethod tomix data. Given input images
x1 and x2, first divide them into N uniform blocks (for example, 9 blocks):

x1 ¼ x11; x
2
1; . . . ; x

N
1

� �
; x2 ¼ x12; x

2
2; . . . ; x

N
2

� � ð10Þ

Then, these blocks are shuffled and recombined to generate a new image
xnewi

, which enhances themodel’s robustness to changes in image structure.
After the images are reassembled, the standard Mixup operation is con-
tinued on these images, that is, weightedmixing. The ratio of the two images
is controlled by the hyperparameter α sampled from the Beta distribution,
and the final mixed image xmix is obtained:

xmix ¼ λxnew1
þ ð1� λÞxnew2

ð11Þ

This process helps avoid disrupting the coherence of text writing when
reorganizing the blocks, ensuring that the structure of the image is main-
tained. Subsequently, the mixed image xmix is passed to the shared feature
extractor f() to obtain its feature representation logitright_mix. Next, the cosine
similaritybetween themixed feature logitright_mix and the virtual prototypepi
in the classifier is calculated, and the mixed image is assigned to the most
similar category label:

cosine similarity ðlogitright mix; piÞ ¼
logitright mix � pi
logitright mix

��� ��� pi
�� �� ð12Þ

yright mix ¼ argmax
i

cosine similarityðlogitright mix; piÞ
� �

ð13Þ

The loss function of the right branch is calculated from the characteristics of
themixeddata, and thefinal loss is expressed asLright. The total loss function
of the model is a combination of the left branch loss and the right branch
loss, where the left branch contains the loss of the original data and the
mixed features, and the right branch only contains the loss of themixed data
set. The final total loss function is

Ltotal ¼ Lleft orig þ Lleft mix þ Lright mix ð14Þ

During training, the left and right branches share the same set of para-
meters. Therefore, we do not need to update the parameters of the left
and right branches separately. By calculating the total loss function,
backpropagation will update the parameters of the shared feature
extractor and classifier according to the total loss function, thereby
minimizing the loss and optimizing the model performance in each
round of training.

L-Selective Loss: combining L-Softmax and selective triplet loss
In this section, we will describe the Ltotal algorithm in detail. Here, we do
not use the traditional cross-entropy loss function, but propose
L-Selective Loss:

Virtual features are derived from original features, so they have certain
similarities in the embedding space and also contain key features that are
discriminative. Learning new classes is essentially a process of extracting
information from these discriminative features. In the incremental learning
stage, L-Selective Loss is suggested to enhance the model’s capacity to
capture the discriminative characteristics of both new and old classes. This
loss combinesLarge-Margin SoftmaxLoss(L-Softmax)41 and selective triplet
loss42 to optimize the category discrimination ability of the basicmodel from
both global and local levels. L-Selective Loss first uses L-Softmax to
strengthen the boundaries between categories at the global level, ensuring
that each category in the embedding space has a compact intra-class dis-
tance and a large inter-class distance, thereby effectively avoiding the
overlap of features between categories. Then, at the local level, the selective
triplet loss focuses on sample pairs that are at the boundary of categories and
are prone to misidentification (including virtual classes and virtual classes,
virtual classes and original classes, and original classes and original classes),
and further improves the model’s clarity of similar feature boundaries
through soft correction.

Large-MarginSoftmax loss. Themain principle of L-Softmax is to force
similar samples to be closer by increasing the margin between categories,
while the distance between heterogeneous samples is significantly
increased. To gain better discriminative ability between categories. Dif-
ferent from the typical Softmax loss, L-Softmax adds a margin to expli-
citly optimize the borders between categories by modifying the
calculation method of category logits.

Assume zi is the feature vector of the ith sample, yi is the target category
of the sample, and the standard Softmax loss function is calculated as

LCE ¼ �
XN
i¼1

log
expðzi;yi ÞP
j expðzi;jÞ

 !
ð15Þ

where zi;yi is the logits value corresponding to category i. L-Softmax
introduces margin by modifying the logits, making the logits of the target
category larger and the logits of other categories smaller. Specifically, for the
target category i, the formula of L-Softmax can be expressed as

ẑi;yi ¼ zi;yi þ ðm� 1Þ ð16Þ

For non-target categories j ≠ yi, keep the original value:

ẑi;j ¼ zi;j ð17Þ
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Among them, m is a margin hyper-parameter, which is usually set to a
constant >1. By increasing the logits of the target category and keeping the
logits of the non-target category unchanged, L-Softmax can force themodel
to enhance the distance between categories during training.

Next, the modified logits are normalized by softmax to get the pre-
dicted probability of the category:

LCE ¼ �
XN
i¼1

log
expðẑi;yi ÞP
j expðẑi;jÞ

 !
ð18Þ

This modification can effectively increase the gap between the target cate-
gory and other categories. The left and right branches in DFS are calculated
using this loss function, and this loss function acts on both the
original dataset and all virtual datasets. Therefore, Lleft_orgin,Lleft_mix, and
Lright_mix are:

Lleft origin ¼ �
XNorigin

i¼1

log
expðẑi;yorigin ÞP

j expðẑi;jÞ

 !
ð19Þ

WhereNorigin is the number of samples in the original dataset, ẑi;ycelgin is the
predicted value in the original dataset, and yorigin is the label of the original
dataset.

Lleft mix ¼ �
XN left mix

i¼1

log
expðẑi;yleft mix

ÞP
j expðẑi;jÞ

 !
ð20Þ

WhereNleft_mix is the number of samples in themixeddataset, ẑi;yleft mix
is the

predicted value of the mixed dataset, and yleft_mix is the label of the mixed
dataset, which includes the original class and the virtual class.

Lright mix ¼ �
XNright mix

i¼1

log
expðẑi;yright mix

ÞP
j expðẑi;jÞ

 !
ð21Þ

WhereNright_mix is a virtual number set, ẑi;yright mix
is thepredicted valueof the

virtual data of the right branch, and yright_mix is the total label of the
virtual class.

Adding these parts together, we get the final total L-softmax loss as

LCE total ¼ Lleft origin þ Lleft mix þ Lright mix ð22Þ

Selective Triplet Loss. Selective Triplet Loss selectively guides positive
and negative samples, allowing the model to fine-tune the learning of
sample pairs that are at the boundary of categories and prone to mis-
identification. Different from the traditional triplet loss, the selective
triplet loss introduces two types of samples: original data and virtual data.
It also optimizes the embedding space through aiming point selection
and negative sample selection.

Specifically, for the selection of positive samples, the selective triplet
loss treats all samples as positive samples in each training round. According
to the category of the positive sample (original data or virtual data), we
further refine the selection process into the following two cases:

1. Original data is a positive sample:
Anchor point selection: Select the class prototype of the original data xi

as the anchor pointCy_i, which is the aggregate representation of all samples
of this class.

Negative sample selection: The current data includes two negative
samples. Negative sample1 is the original sample a of other categories that is
most similar to the Cy_i prototype; negative sample2 is the virtual sample b
that is most similar to the Cy_i prototype.

For this case, the triplet loss is calculated as

Ltriplet orig ¼ maxð0; dðcyi ; xiÞ � dðcyi ; aÞ þmÞ
þmaxð0; dðcyi ; xiÞ � dðcyi ; bÞ þmÞ ð23Þ

Wherem is a constant representing theminimum spacing between positive
and negative samples.

2. Virtual data is a positive sample:
Anchor point selection: The aiming point of the virtual data x_j is the

virtual prototype Cvir that has the greatest similarity with the virtual data.
Negative sample selection: The current data includes two negative

samples.Negative sample1 is thenegative sample c selected fromtheoriginal
data with the greatest similarity to the virtual prototype Cvir. Negative
sample2 is the negative sample d selected from the virtual data with the
greatest similarity to the virtual prototype Cvir.

For this case, the triplet loss is calculated as

Ltriplet vir ¼ maxð0; dðcvir; xjÞ � dðcvir; cÞ þmÞ
þmaxð0; dðcvir; xjÞ � dðcvir; dÞ þmÞ ð24Þ

The final total triplet loss is the sum of the two triplet losses:

Ltriplet total ¼ Ltriplet orig þ Ltriplet vir ð25Þ

Algorithm 2. Incremental learning phase algorithm flow
Require: Incremental phase new class data Dt

train (t ≥ 1), optimized feature
extractor fe and classifier ge

Ensure: Updated classifier ge
1: Input: New class data xt in the incremental phase
2: Freeze the parameters of the feature extractor fe
3:Use the shared feature extractor fe to extract the feature representation rtc
of the new class data

4: Calculate the true class prototype ptc of the new class
5: Replace the corresponding virtual prototype in the classifier with the
class prototype ptc of the new class

return Updated classifier ge

Total loss function. L-Selective Loss is the total objective function Ltotal
of DFS, which consists of global loss (L-Softmax) and local loss (selective
triplet loss), expressed as

Ltotal ¼ LSelective loss ¼ LCE total þ Ltriplet total ð26Þ

In the basic training stage (Task 0), L-Selective Loss acts on the left and right
branches of the dual-branch structure at the same time andback-propagates
through the parameters of the shared feature extractor to optimize the
model’s prediction ability for unknown classes. After entering the
incremental learning stage (Task 1, Task 2, etc.), the parameters of the
feature extractor are frozen and no longer updated, an algorithmic process
asAlgorithm2.At this time, the basic feature extractor is onlyused to extract
feature representations of new class data without back-propagation. For
each incremental task, we obtain the feature representation of the new class
through the basic feature extractor and calculate the true class prototype of
the class to replace the position of the virtual class in the classifier. The class
prototypes of these new classes will be used for classification prediction of
the new classes.

Discussion: There are limitations to using L-Softmax or selective triplet
loss by itself. By increasing the border distance across categories, L-Softmax
may increase global category discrimination; however, it is ineffective at
optimizing for sample pairs with fuzzy boundaries or high similarity, which
makes it easy for these samples to be confused. Although it improves the
processing of comparable sample pairs and concentrates on local
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optimization, the selective triplet loss does not have a strong enough spatial
expansion impact between global categories. Thus, L-Selective Loss com-
bines L-Softmax with selective triplet loss, which increases the processing
capacity of highly comparable data by local optimization in addition to
increasing the global distance across categories. Simultaneously, L-Selective
Lossmay enhance the proportionof virtual features in the embedding space,
which would enhance the capacity to capture novel features during the
learning phase.

Experiment
Datasets
The paper conducted experiments on three datasets: HWAYI scripts,
OBC306 scripts, and DB scripts, as shown in Fig. 3. The HWAYI scripts
dataset contains a total of 112,031 handwritten Ancient Yi characters in
1764 categories (27–96 images per category), and each character image has
beennormalized toa sizeof 64 × 64.OBC30643 is adataset of rubbingoracle
bone characters. It contains a total of 309,551 images covering 306 different
categories.The smallest categoryhasonlyone image and the largest category
has 25,898 images. The DB scripts dataset contains 2306 categories of
Dongba characters, each category contains 1–50 images. The paper ran-
domly selects 100 categories in theHWAYI scripts,OBC306 scripts, andDB
scripts datasets as experimental data, denoted asHWAYI100,OBC100, and
DB100 (Due to limitations of experimental conditions, only 100 categories
were selected for experiments.), each category contains 27–96 images. To
make the model more generalizable, this paper did some preprocessing
operations on the HWAYI dataset. The original black and white Yi text
pictures were added with a background color, and some of the pictures
inside were randomly rotated and cropped.

Dataset split
The three datasets, HWAYI100, OBC100, and DB100, were divided into 60
base classes and 40 new classes, respectively. The new classes were cate-
gorized into three task formats: eight 5-way, 5-shot incremental tasks, ten 4-
way, 5-shot incremental tasks, and twenty 2-way, 5-shot incremental tasks.
Among them, the eight 5-way, 5-shot incremental tasks represent 8 incre-
mental stages, each incremental stage joins 5 new classes, and each new class
contains 5 training samples(way represents the number of categories added
to the new category in each incremental stage, and shot represents the
number of sample images used for training for each new category). The rest
of the tasks form meanings and so on. In the base training phase of the
model, the focus is on these 60 base classes for training to establish the base
performance. For a fair comparison, the same training segmentation strategy
(both base and incremental phases) is used for each comparison method.

Training details
All models were implemented using PyTorch43. For all compared methods,
the same network backbone was used. For the HWAYI100, OBC100, and
DB100 datasets, ResNet 2044 was employed with a batch size of 64 for 50
training epochs, optimizing with SGD with momentum. The learning rate
started at 0.1 and gradually decreased.

Evaluation metrics
We represented the Top-145 accuracy after the ith session as Ai. We also
quantitativelymeasured the forgetting phenomenon using the Performance
Drop (PD), where PD =A0−AB, with A0 denoting accuracy after the base-
line session and AB denoting accuracy after the last session.

The lower the PD, the lower the forgetting phenomenon of the model,
and the better the recognition effect of new and old classes. ΔPD is the
difference in PD value between the method proposed in this article and
othermethods, expressed as a formula isΔPD = PDours−PDi, i denotes other
methods.

Benchmark comparison
Ourmethod is compared with the classic few-class incremental learning
methods in recent years on the HWAYI100, OBC100, and DB100
datasets, including CLOM46, CEC25, SAVC24, FACT7, and S3C26. Addi-
tionally, a baseline called “Fine-tuning” was established, which directly
fine-tuned the decoupled prototype network using limited data. Per-
formance curves are presented in Fig. 4, and detailed numerical values
for the OBC100, HWAYI100, and DB100 datasets are provided in
Tables 1, 2, and 3.

As can be seen from Tables 1–3, the paper-proposed method con-
sistently outperforms the FACTmethod by 1–3%on all datasets. In the table,
0 represents thebasic training stage, 1–8 represents the incremental stage, and
each incremental stage adds 5 new categories of data. The performance
difference in the incremental stage suggests that DFS strengthens the net-
work’s fit to unknown classes. Secondly, SACV generates virtual classes
through predefined transformations. It can be seen from the table that it does
notworkwell for the incremental recognition task of ancient characters. This
is because each virtual class in SACV is equivalent to a “fine-grained” class
derived from the original class. For ancient Chinese characters, such virtual
classes are highly similar to the original classes, which can easily lead to
prediction errors in the model. This paper proposes to generate virtual
information from deep feature fitting and structural fitting, which is more in
line with the glyph features of the ancient Chinese dataset. And combined
with L-Selective Loss to refine the distinction between virtual classes and
original classes. In summary, this method has strong applicability in the

Fig. 3 | Datasets.
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Fig. 4 | Comparative experiments of k-way on HWAYI100, OBC100, and DB100 datasets.

Table 1 | Detailed accuracy for each incremental session on the OBC100 dataset

Method Accuracy in each session↑

0 1 2 3 4 5 6 7 8 PD↓ ΔPD

Finetune 80.283 74.416 69.101 64.494 60.463 56.432 53.322 50.536 48.027 32.256 +15.785

CEC25 77.605 73.712 71.908 69.389 66.097 64.0 61.244 60.053 59.354 18.251 +1.78

CLOM46 84.03 79.81 75.39 71.39 68.38 66.07 63.61 62.52 60.76 23.27 +6.799

S3C26 75.709 72.355 69.59 67.43 65.106 62.909 60.489 60.049 58.667 17.042 +0.571

FACT7 81.704 77.593 75.888 73.924 70.639 68.571 66.492 64.855 63.221 18.483 +2.012

SAVC24 71.79 67.966 64.863 63.615 60.929 58.935 57.579 56.284 53.679 18.111 +1.67

Ours 80.994 78.102 76.67 74.405 71.15 69.571 67.259 66.089 64.523 16.471

The bold values in the last row represent the recognition accuracy of our proposedmethod in the incremental stage, and the bold values in the last column represent the improved accuracy of our proposed
method in the forgetting rate indicator compared with other methods.
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incremental recognition task of ancient characters and performs well com-
pared with other methods.

Furthermore, Fig. 4 presents the comparison results for different k-
way experiments on the HWAYI100, OBC100, and DB100 datasets.
Observing the results, DFS performance still does not drop significantly as
the number of new categories increases. And in incremental experiments,
whether adding 2 or 5 new classes per session, our proposed method still
outperforms other incremental learningmethods in terms of the forgetting
rate metric.

Note: In Tables 1 and 2, the recognition accuracy of the basic stage
(0 session) is slightly lower than that of the CEC and FACTmodels. This is
because the use of known classes to pre-simulate unknown classes in the
basic training stage affects the recognition ability of the model in the basic

stage. However, this effect is negligible compared to the improvement of the
model effect in the incremental stage. Therefore, we believe that thismethod
is applicable and effective.

Ablation study
To assess the impact of each component, an ablation study was conducted,
and the experimental results on the OBC100 dataset are summarized in the
table. We use the incremental model without using CAM, FFM, and
L-Selective Loss as a baseline comparison. The following is a detailed analysis
of the experimental results: First, we examined the performance of each
component separately. From Table 4, we can see that each component
improves the model’s forgetting rate and incremental stage accuracy to a
certain extent. Second, we examine the impact of the CAM and FFM. The

Table 2 | Detailed accuracy for each incremental session on the HWAYI100 dataset

Method Accuracy in each session↑

0 1 2 3 4 5 6 7 8 PD↓ ΔPD

Finetune 96.677 92.463 87.326 82.73 74.851 69.347 64.598 61.242 58.945 37.732 +28.887

CEC25 93.71 92.921 91.501 90.959 89.787 88.356 87.853 85.70 84.684 9.026 +0.181

CLOM46 96.32 95.02 92.99 92.51 91.90 89.37 88.21 87.89 86.27 10.05 +1.025

S3C26 91.397 89.363 88.026 85.882 84.366 82.068 80.883 79.608 78.641 12.756 +3.911

FACT7 96.851 95.14 93.692 91.306 91.353 89.08 88.243 88.114 87.057 9.794 +0.949

SAVC24 89.686 88.413 86.495 83.55 82.753 81.227 79.504 78.852 77.484 12.202 +3.357

Ours 96.851 95.417 94.047 91.631 91.864 90.159 89.142 88.787 88.006 8.845

The bold values in the last row represent the recognition accuracy of our proposedmethod in the incremental stage, and the bold values in the last column represent the improved accuracy of our proposed
method in the forgetting rate indicator compared with other methods.

Table 3 | Detailed accuracy for each incremental session on the DB100 dataset

Method Accuracy in each session↑

0 1 2 3 4 5 6 7 8 PD↓ ΔPD

Finetune 93.256 85.562 76.395 73.761 69.002 64.82 61.116 57.812 54.848 38.408 +33.698

CEC25 96.067 95.118 95.611 94.949 94.985 93.885 92.957 91.228 90.447 5.62 +0.91

CLOM46 97.07 96.18 95.66 94.33 94.08 92.18 90.36 88.08 86.28 10.79 +6.08

S3C26 95.341 94.585 93.697 90.795 89.885 87.441 84.608 82.689 82.255 13.086 +8.376

FACT7 96.906 96.602 95.981 94.844 94.59 92.973 91.652 89.84 89.644 7.262 +2.552

SAVC24 95.804 95.296 94.506 92.229 92.06 90.153 88.50 87.176 87.299 8.505 +3.795

Ours 96.639 96.612 96.284 95.425 95.325 94.311 93.50 91.946 91.899 4.74

The bold values in the last row represent the recognition accuracy of our proposedmethod in the incremental stage, and the bold values in the last column represent the improved accuracy of our proposed
method in the forgetting rate indicator compared with other methods.

Table 4 | Ablation experiments on the OBC100 dataset

LCE_total Ltriplet_total CAM FFM Accuracy in each session↑

0 1 2 3 4 5 6 7 8 PD↓ ΔPD

× × × × 80.827 77.525 75.024 73.024 69.651 68.00 65.87 64.141 62.487 18.34

✓ × × × 80.667 77.881 75.707 73.942 70.522 68.584 66.431 65.023 63.478 17.189 +1.151

× ✓ × × 80.364 77.153 74.85 73.27 69.918 68.0 66.102 64.8 63.022 17.342 +0.998

× × ✓ × 80.525 76.932 74.077 73.017 69.793 67.935 65.87 64.224 62.922 17.603 +0.771

× × × ✓ 80.37 77.153 74.632 73.086 69.827 68.338 66.114 64.262 62.801 17.569 +0.737

× × ✓ ✓ 81.284 78.305 75.516 74.118 70.657 68.831 66.626 65.261 63.544 17.74 +0.6

× ✓ ✓ ✓ 81.123 78.661 75.61 74.43 71.349 69.468 67.211 65.921 64.079 17.044 +1.296

✓ ✓ ✓ ✓ 80.994 78.102 76.67 74.405 71.15 69.571 67.259 66.089 64.523 16.471 +1.869

The bold values in the last row represent the recognition accuracy of our proposedmethod in the incremental stage, and the bold values in the last column represent the improved accuracy of our proposed
method in the forgetting rate indicator compared with other methods.
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two modules effectively fill the embedding space of unknown classes from
the aspects of feature and structure fitting respectively. The results in Table 4
show that the virtual information fitting method significantly improves the
accuracy of the baseline model. The forgetting rate indicator increased by
0.60%. Improves the network’s prediction ability for unknown categories.
One point that needs clarification is that adding only the FFM component is
slightly better than using both FFM and CAM components together on the
forgetting rate metric. However, the classification accuracy indicators in the
basic stage and incremental stage are better than just adding FFM. Therefore,
we believe that the combined use of FFM and CAMhas a promotional effect.

Finally, we propose to use the L-Selective Loss to further improve
model performance. This method aims to maximize the separation of
similar instances, reduce the mixing of virtual instances and original
instances, and provide more spatial locations for the embedding of
unknown classes. As shown in the results in Table 4, the method further
increased the model’s forgetting rate indicator by 1.869%. This shows that
the two improved modules proposed in this paper complement each other,
enhance the model’s adaptability to unknown classes, and show better
performance on the OBC100 dataset. It is worth noting that similar results
were alsoobservedon theHWAYI100andDBdatasets, further verifying the
effectiveness and versatility of our method.

Additional experiments
Incremental experiments. To further verify the performance of this
model in few-shot incremental learning tasks. As shown in the left picture
of Fig. 5. The experimental results on the HWAYI100 dataset for k-shot
experiments are presented, where k takes values of 1, 5, 10, 15, and 20.
Among them, 1-shot means that only one sample of each unknown class

is used for experiments in each incremental stage. Similarly, 5-shot, 10-
shot, 15-shot, and 20-shot correspondingly denote experiments invol-
ving five, ten, fifteen, and twenty samples for each unknown class,
respectively.

Experimental results show that in the incremental phase, the recog-
nition accuracy of the model in the 1-shot experiment drops significantly.
When each new class contains greater than or equal to 5 samples, the
model’s recognition accuracy remains between87.5%and97.5%. To further
illustrate DFS’s performance in Few-Shot Class-incremental learning tasks,
conducted 1-shot experiments for each classic model on the OBC100
dataset, as shown in the right picture in Fig. 5. Note that the comparison
model used here is consistent with themodel used in the section “Datasets”.
It is observed that for the 1-shot experiment, the accuracy of each model
decreases in the incremental stage, but ourmethod still has advantages over
other methods.

Similar character separation experiment. To verify the effectiveness of
the L-Selective Loss, 20 groups of similar characters were selected from
the OBC-100 dataset for experiments, as shown in Fig. 6. This group of
similar-shaped characters is used as a training dataset, as shown in Fig. 7,
which shows the t-SNE47 embedding space visualization results of three
methods: SACV, FACT, andDFS(Ours). During the experiment, only the
Shape-Similar Character Separation Optimization Loss was used for
model optimization. By observing the experimental results, it was found
that SAVC performed poorly in the recognition task of similar-shaped
characters, while FACT and DFS(Ours) had better separation effects on
them. In contrast, DFS(Ours) further reduces the intra-class distance of
similar characters and enlarges their inter-class distance.

Fig. 5 | The left picture shows a k-shot comparison
experiment on theHWAYI100 dataset, and the right
picture shows a 1-shot comparison experiment on
the OBC100 dataset.

Fig. 6 | Sample similar dataset.
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Comparison of results of different fusion strategies. To verify the
fitting effect of Mixup method on unknown classes in the generation of
virtual features of ancient characters. We compared a variety of classic
image fusion methods on the Dongba script dataset, including CutMix48,
Random Erasing49, PatchMix50 and AugMix51, and the experimental
results are shown in Table 5. In the experiment, in order to maintain
consistency, we only replaced the fusion method on the left and replaced
the feature fusion strategy with the above image fusion method for
comparison. The experimental results are shown in Table 5. Among all
the fusion strategies, Mixupmethod achieved the best results. This shows
that Mixup is more suitable for incremental learning tasks in the process
of generating virtual features of ancient characters, and can providemore
sufficient embedding space and higher fitting degree for new class fea-
tures. Also, experimental results also show that DFS’s dual-branch

strategy and virtual prototype introduction mechanism can significantly
improve model performance under different fusion strategies, further
verifying the rationality and adaptability of our method.

Confusion matrix. Figure 8 in parts (a), and (b) illustrates the compar-
ison of the confusion matrices between SAVC and DFS(Ours) on the
OBC100 dataset. The confusion matrix is presented with a bright diag-
onal and a darker background, where the diagonal reflects a high level of
classification accuracy. As mentioned in Section dataset split, the 60
classes were divided into known classes, and the remaining 40 classes
were treated as new classes. Through observation, it is found that
DFS(Ours) eliminates the misidentification of old classes to a certain
extent compared with the SAVC method. And it performs well in pre-
dicting both known and unknown classes.

Fig. 7 | t-SNE embedding visualization results of similar datasets.

Table 5 | Comparison results of different fusion strategies on the Dongba script dataset

Method Accuracy in each session↑

0 1 2 3 4 5 6 7 8 PD↓

Cutmix 96.251 96.553 96.556 95.421 95.325 94.214 93.109 91.84 90.976 5.275

Random Erasing 96.078 95.734 95.889 94.947 94.955 93.400 92.565 90.965 90.896 5.182

PatchMix 96.804 96.737 96.314 95.368 95.29 94.36 93.152 91.779 91.802 5.002

Augmix 96.11 96.043 95.839 95.211 95.155 93.782 92.913 91.215 90.284 5.826

Mixup 96.639 96.612 96.284 95.425 95.325 94.311 93.50 91.946 91.899 4.74

Fig. 8 | Confusion matrix visualization experiment and parameter analysis experiment. a, b Confusion matrix images of SAVC and DFS (ours) on the OBC100 dataset.
c Experimental parameter analysis.
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Parameter analysis. In prototype-based triplet loss, there are two key
hyper-parameters: the coefficient α and the boundary control parameter
m. These two hyper-parameters play crucial roles in the loss function,
where α controls the relative weight between the class triplet loss and the
maximum margin loss. And m controls the boundary distance value
between similar characters. In the study, we report experimental results
for multiple hyper-parameter settings on the OBC100 dataset, as shown
in part c of Fig. 8. After analysis, the optimal performance of the model is
achieved when α = 0.1 and m = 2 This indicates that, under this specific
combination of hyper-parameters, proximity-based triplet loss performs
best on the OBC100 dataset.

Conclusions and future works
In this study, we applied the incremental frozen framework to the con-
tinuous learning of ancient Chinese characters for the first time to solve the
problems of few samples and forgetting of old classes in the incremental
recognition of ancient characters. To this end, a dual-branch forward
simulation network (DFS) was proposed. Specifically, DFS constructs deep
virtual features and virtual original data, respectively, through adual-branch
structure to train the feature extractor in the basic stage, and combines
L-Selective Loss to improve the model’s sensitivity to unknown features,
thereby enhancing the feature expression of new class data in the incre-
mental stage. Experimental results show that DFS exhibits excellent
recognition performance on the ancient Chinese character dataset, espe-
cially in the incremental learning task of new classes, and can achieve the
ability to continuously learn new classes without retraining the entire net-
work. We hope that this study will provide new research perspectives and
methods for the field of text recognition, especially the incremental learning
of ancient characters, andpromote the further development and application
of related technologies.

We believe that future research will focus more on combining the
detection of unknown classes with model extension. We look forward to
future research exploring this issue more deeply and providing innovative
methods and solutions for new class detection to advance the field further.

Data availability
The datasets used or analyzed during the current study are available from
the corresponding author on reasonable request.
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