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Color reconstruction of ancient paintings
based on dual pooling attention and pixel
adaptive convolution
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Zengguo Sun1,2 , Zhiyuan Zhang2 & Xiaojun Wu1,2

In order to address inaccurate colors in reconstructed results, inconsistent color reconstruction for
background and content, and poor local color reconstruction, a model is proposed for the color
reconstruction of ancient paintings based on dual pooling attention and pixel adaptive convolution.
Firstly, a Dual Pooling Channel Attention module is proposed to address inaccurate colors in
reconstructed results. This module enhances the model’s ability to extract features by assigning
different weights to the image channels, thereby reducing inaccurate colors. Additionally, to solve the
problem of inconsistent color reconstruction due to variations in background and content, a Content
Adaptive Feature Extraction module is constructed. This module adaptively adjusts the convolutional
parameters in terms of the differences in background and content, improving the overall effectiveness
of color reconstruction. Lastly, a Contrastive Coherence Preserving Loss is introduced to solve the
problem of poor reconstruction of local colors. The loss enhances the model’s focus on image
localization by constraining local features, thereby improving the local color reconstruction.
Comparison experiments and ablation experiments are performed on various datasets. Experimental
results show that, compared with the latest models, the proposed model effectively preserves the
structural information and content details of ancient paintings. It produces reconstructed results with
clear outlines and harmonious colors, achieving better color reconstructed results both globally and
locally.

Chinese ancient paintings embody the national spirit and artistic achieve-
ments spanningfive thousand years, owning immense artistic and historical
value. Due to environmental factors or human activities, these paintings
often suffer from fading and discoloration1–3, which greatly diminishes their
aesthetic appeal and historical value. Therefore, reconstructing the colors of
ancient paintings is of great importance.

Color reconstruction of ancient paintings enhances colors in back-
grounds, mountains, trees, rocks, and other elements withmanual or digital
methods. It addresses issues of fading and discoloration while preserving
structural information and content details. Manual color reconstruction
requires a deep analysis of the painting’s style, content, and techniques,
which is inefficient and can even damage the artwork4. As computer tech-
nology advances, the techniques for digital color reconstruction are widely
used. Digital methods are easily adjustable, and they avoid direct manip-
ulation of the original paintings, thus preventing potential damage. Digital
color reconstruction techniques are based on traditional methods and deep
learning methods. Traditional methods rely on model selection and

parameter settings. For example, Li et al.5 used multispectral imaging to
identify pigments for mural color reconstruction. However, improper
model selection or parameter settings can result in suboptimal recon-
structed results.

In recent years, with the advancement of artificial intelligence, deep
learning has beenwidely applied to color reconstruction tasks6–9, enhancing
the effectiveness of color reconstruction by deeply learning the character-
istics of ancient paintings. Using deep learning techniques for the color
reconstruction of ancient paintings typically involves constructing datasets
for color reconstruction, training models to learn semantic and color fea-
tures of the paintings, and ultimately applying the trained models to
reconstruct colors. Color reconstruction models often use VGG as an
encoder, which struggles to preserve image details. Meanwhile, inaccurate
colors frequently appear in the reconstructed results due to the difficulties in
accurately extracting semantic and color features. Additionally, models
generally process images as a whole, resulting in suboptimal local color
reconstruction. Therefore, it is crucial to preserve the structural information
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and content details of ancient paintings, accurately reconstruct colors, and
enhance local reconstruction effects.

The CAP-VSTNet10 introduced a method by using flow-based
models11 for natural image style transfer, effectively preserving content
information. Inspired by this, a color reconstruction model is proposed for
ancient paintings based on Dual Pooling Attention and Pixel Adaptive
Convolution. This model maintains the structural integrity and content
details of ancient paintings by using the flow-based model, mitigates fading
and discoloration issues, reduces inaccuracies in color reconstruction, and
enhances the reconstruction effects both globally and locally. The main
contributions of this paper are as follows:
• To address the issue of inaccurate colors in color reconstruction of

ancient paintings, a Dual Pooling Channel Attention module (DPCA)
is constructed. This module enhances the model’s ability to extract
features by assigning different weights to the image channels, reducing
inaccurate colors and improving the color reconstruction of ancient
paintings.

• To solve the problem of inconsistent color reconstruction due to var-
iations in background and content, a Content Adaptive Feature
Extraction module (CAFE) is constructed. This module adaptively
adjusts the convolution parameters in terms of the differences in
background and content, improving the overall effectiveness of color
reconstruction.

• To improve the localized color reconstruction of ancient paintings, a
Contrastive Coherence Preserving Loss (CCPL) is introduced. The loss
enhances themodel’s focus on image localization by constraining local
features, thereby improving the local color reconstruction.

Related work
The proposedmethod involves image style transfer,flow-basedmodels, and
color reconstruction.This sectiondiscusses relatedwork in these threeareas.

Image style transfer
Image style transfer is an important research area in computer vision. It
transfers the style of a style image to a content image while preserving the
content. The content of an image includes details and positions of objects,
while style refers to the information such as color and brightness. Gatys6

used convolutional neural networks to extract image features, separating
content and style information at the feature level. Following this,many deep
learning-based methods for image style transfer emerged. To address the
slow speed of style transfer, feed-forward neural networks were used to
accelerate the process8,12. Research then focused on using a single model for
multi-style transfer13,14, but these models only handle specific styles. Con-
sequently, many studies15,16 aimed at universal style transfer. Li et al.17

proposed a linear transfer network for transferring any style to a content
image. SANet18 added non-local self-attention to style transfer models but
failed to align local features. AdaAttN7 combined SANet and AdaIN16,
balancing local and global stylization effects. PhotoWCT19 replaced the
upsampler operation in VGG decoders with uppooling, better preserving
details in transfer results.WCT220 replaced pooling layers in VGGdecoders
with wavelet pooling, better preserving spatial information of content
images. DPST21 and CAP-VSTNet10 introduced Matting Laplacian22 into
networks to retain details in transfer results, achieving good results.

Flow-based models
Flow-based models are generative models that learn high-dimensional
feature distributions with a series of reversible transformations. Dinh et al.11

first proposed NICE to model high-dimensional complex data for image
generation. Real NVP23 introduced new transformation operations to
reduce computation and improve image quality. Glow24 simplified the
structure of Real NVP, making the model more streamlined and standar-
dized. Flow++25 enhanced feature expression by introducing self-attention
mechanisms and new coupling layers. Recently, flow-based models have
been applied in image generation24,25, speech synthesis26, and other fields.
BeautyGlow27 designed a flow-based model for digital makeup. ArtFlow28

used a flow-basedmodel for artistic style transfer. CAP-VSTNet10 proposed
a flow-based model for universal style transfer in images and videos.

Color reconstruction
Color reconstruction involves reconstructing color from fadedordiscolored
images.Wan et al.29 used variational autoencoders to reconstruct details and
colors in photos. Pik-Fix30 focused on reconstructing colors in degraded old
photographs. JWA et al.31 used deep convolutional networks for image
colorization of natural images. DDNM32 developed a zero-shot framework
for colorizing grayscale natural images. Wang et al.33 built a generative
adversarial networkmodel for color reconstruction of faded and discolored
murals. DC-CycleGAN34 extracted complex features of mural images to
construct a model for the color reconstruction of murals. CR-ESRGAN35

addressed the fading of cultural relics by developing a color reconstruction
model, but suffers from inaccurate color reconstruction. The proposed
model effectively preserves structural information and content details. It
adapts to different contents of ancient painting, achieving better color
reconstructed results both globally and locally.

Methodology
The model is proposed for color reconstruction. In this section, the pro-
posed model is described in detail, including the overall structure, Dual
Pooling Channel Attention module (DPCA), Content Adaptive Feature
Extraction module (CAFE), and loss functions.

Overall structure
It is essential to preserve the structural and detailed information of degraded
ancient paintings in color reconstruction. CAP-VSTNet10 uses a flow-based
model for natural image style transfer, effectively retaining content infor-
mation. Inspired by this, a method for the color reconstruction of ancient
paintings is proposed with a flow-based model, considering the rich details
and delicate colors of ancient paintings.

The structure of the constructedmodel is shown in Fig. 1, including the
feature extraction module and the color reconstruction module. Firstly,
the model uses the feature extraction module to obtain features from the
degraded and reference images. Then, these features are fed into the color
reconstruction module for color reconstruction, yielding reconstructed
color features. Lastly, the reconstructed features are input back into the
feature extraction module, and then the color-reconstructed image is
obtained in terms of the reversibility of the flow-based model.

The feature extractionmodule consists of a channel expansionmodule,
several reversible residual blocks, two Squeeze modules, and a channel
refinement module. The channel expansion module increases the number
of channels of the input image, thereby enhancing the model’s ability to
feature representation.The reversible residual blocks are stacked to achieve a
larger receptive field, thereby extracting deeper features. The Squeeze
module reduces the spatial dimensions of features while increasing the
number of feature channels to capture larger-scale feature information. The
channel refinement module reduces the number of feature channels to
eliminate redundant information. The color reconstruction module inte-
grates Cholesky decomposition36 and WCT15 for color reconstruction,
producing reconstructed features.

The forward and backward inference in reversible residual blocks are
shown in Fig. 2. In the forward inference, let x be the input and y the output.
The input x is split into x1 and x2 along the channel dimension. The
transformations are formulated by (1) and (2):

y1 ¼ x1 þ Fðx2Þ ð1Þ

y2 ¼ x2 ð2Þ

where y1 and y2 are the results obtained from x1 and x2 according to (1) and
(2), respectively. These are concatenated along the channel dimension to
form the output y of the reversible residual block. F is the sequential con-
catenation of theDual Pooling Channel Attentionmodule (DPCA) and the
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Content Adaptive Feature Extraction module (CAFE). In the backward
inference, let y be the input and x the output. The input y is split into y1 and
y2 along the channel dimension. The inverse process is formulated by (3)
and (4).

x2 ¼ y2 ð3Þ

x1 ¼ y1 � Fðx2Þ ð4Þ

Information loss during data propagation in themodel is avoided with
these reversible transformations, effectively preserving the structure and
details of degraded ancient paintings10,11. The DPCA is introduced into the
reversible residual block, which enhances the abilities to extract features and
reduces inaccurate colors in the reconstructed results. The CAFE is incor-
porated into the reversible residual block, dynamically adjusting convolu-
tional parameters to ensure color consistency between the background and
the content. The Contrastive Coherence Preserving Loss is introduced to
constrain the local features of degraded and reconstructed paintings, which
improves the local color reconstruction.

Dual pooling channel attention module
Chinese ancient paintings exhibit rich color layers. It is essential to accu-
rately extract features of ancient paintings for color reconstruction. The
Efficient Channel Attention Network (ECANet)37,38 enhances the model’s
performance by calculating channel weights through local cross-channel
interaction. Inspired by this, to address the issue of inaccurate colors in
reconstructed results, theDual PoolingChannelAttention (DPCA)module
is constructed. This module assigns different weights to image channels,

enhancing the model’s ability to extract and match image features, thereby
reducing inaccurate colors, as shown in Fig. 3.

Firstly, an average pooling (AP) is performed on the input features of
sizeH ×W ×C to obtain features of size 50× 50×C. Then, global average
pooling (GAP) is applied to these features, producing features of size
1× 1×C. After that, a convolution operation with a kernel size k ¼ 5 and a
Sigmoid activation function is performed to obtain the attention weights.
Finally, the weights are element-wise multiplied with the input features to
produce the output features. The features of images are better extracted and
matched by assigning different weights to the image channels, reducing
inaccurate colors in reconstructed results.

Content adaptive feature extraction module
Elements in Chinese ancient paintings, such asmountains, trees, and rocks,
are often painted with different pigments and techniques from those used
for backgrounds. This results in varying degrees of color degradation and
makes it challenging to adaptively reconstruct colors based on the back-
ground and compositional elements. Pixel Adaptive Convolution (PAC)39

modifies the convolution kernel according to image features, allowing
adaptive feature extraction based on image content. Inspired by this, to
address the aforementioned problem, the Content Adaptive Feature
Extraction (CAFE)module is constructed.CAFEadjusts convolutionkernel
parameters based on image content, better adapting to the backgrounds and
compositional elements of ancient paintings, as shown in Fig. 4.

CAFE consists of two convolution layers and one pixel adaptive con-
volution layer. When features are input into CAFE, convolution is first
performed to obtain features f and v. Then, f is input into the kernel
functionK to obtain adaptive weights. After that, the weights aremultiplied
by the convolution kernel W to obtain pixel-adaptive convolution

Fig. 2 | Forward and backward inference in rever-
sible residual blocks.

Fig. 1 | Structure of the proposed model.
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parameters. Simultaneously, the convolution kernel parameters are multi-
plied by the feature v to obtain the output feature v0. The kernel functionK is
formulated by (5):

Kðf ðxi;yiÞ; f ðxj;yjÞÞ ¼ exp � 1
2
ðf ðxi;yiÞ � f ðxj ;yjÞÞ

T ðf ðxi;yiÞ � f ðxj;yjÞÞ
� �

ð5Þ

where f ðxi;yiÞ represents the feature value at the position ðxi; yiÞ in the feature
map, T denotes thematrix transpose. Themodule obtains adaptive weights
by inputting features into the kernel function K . The weights are then
multiplied by the convolution kernel W, enabling the adjustment of con-
volution kernel parameters based on image content. This obtains better
color reconstruction adapted to the backgrounds and compositional ele-
ments of ancient paintings.

Loss function
The local colors ofChinese ancient paintings are rich anddetailed,making it
challenging to reconstruct the color of paintings accurately. TheContrastive
Coherence Preserving Loss40 is introduced to enhance the model’s focus on
image localization, thereby improving the reconstruction of local colors.

Total loss. The total loss of the proposed model is formulated by (6):

Ltotal ¼ λccpLccp þ λsLs þ λmLm þ λcycLcyc ð6Þ

whereLccp is the contrastive coherence preserving loss,Ls is the style loss,Lm
is the Matting Laplacian loss, Lcyc is the cycle consistency loss, and λccp, λs,
λm, and λcyc are the weights for Lccp, Ls, Lm and Lcyc, respectively.

Contrastive coherence preserving loss. The Contrastive Coherence
Preserving Loss (CCPL)40 is introduced to enhance themodel’s focus on
image localization by constraining local features, thereby improving the
reconstruction of local colors. To apply CCPL, initially, the degraded
and reconstructed images are input into an encoder to obtain feature
maps. Feature vectors are then sampled from these maps, along with
their eight nearest neighboring vectors for each vector. Then the dif-
ference vectors are obtained by vector subtraction between a vector and
its neighboring vectors. CCPL constraints local features by using
positive and negative pairs, positive pairs consist of difference vectors
from the same spatial locations in the degraded and reconstructed
paintings, while negative pairs consist of vectors from different loca-
tions. CCPL operates by maximizing the mutual similarity of positive
pairs while minimizing the similarity of negative pairs, thereby
enhancing local coherence. The contrastive coherence preserving loss is
formulated by (7):

Lccp ¼
XN
m¼1

� log
expðdmg � dmc =τÞ

expðdmg � dmc =τÞ þ
PN

n¼1;n≠m expðdmg � dnc =τÞ

" #" #

ð7Þ

where N is the total number of difference vectors. dmg and dmc are the m-th
difference vectors in reconstructed and degraded paintings, respectively.dnc
is the n-th difference vector in degraded paintings.τ is a hyperparameter set
to 0.07.

Style loss. The style loss10 is formulated by (8):

Ls ¼
X4
i¼1

kμðϕiðIcsÞÞ � μðϕiðIsÞÞk2 þ
X4
i¼1

kσðϕiðIcsÞÞ � σðϕiðIsÞÞk2 ð8Þ

where Is is the referencepainting, and Ics is the color-reconstructedpainting.
Features of ancient paintings are extracted using the first four layers of the
pre-trainedVGG19network.ϕi is the output featuremap of the i-th layer of
the VGG19 network. μ and σ are the mean and standard deviation,
respectively. k�k2 is the L2-norm. The style loss constrains the color
differences between the reconstructed and reference paintings,making their
color styles similar.

Fig. 4 | Content Adaptive Feature Extraction Module.

Fig. 3 | Dual Pooling Channel Attention module.
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Matting Laplacian loss. TheMatting Laplacian loss10,22 is formulated by
(9):

Lm ¼ 1
N

X3
c¼1

Vc½Ics�TMVc½Ics� ð9Þ

whereN is the number of image pixels. Vc½Ics� is the vectorized form of the
color-reconstructed painting Ics in channel c. T is the transpose of the
obtained vector. M represents the Matting Laplacian matrix of the color-
degraded painting. The Matting Laplacian loss constrains the pixel
differences between the color-degraded and color-reconstructed paintings.
This ensures better preservation of lines, brushstrokes, and other details in
the color-reconstructed painting.

Cycle Consistency loss. The cycle consistency loss10 is formulated by
(10):

Lcyc ¼ k~IC � ICk1 ð10Þ

where~IC is the result obtained by inputting the reconstructed painting into
the model, using the degraded painting as a reference. IC is the degraded
painting.k�k1 is theL1-norm.The cycle consistency loss allows themodel to
reconstruct the input image. This constrains the features of the degraded
and reference paintings, ensuring accurate color matching between them.

Experiments and results
This section will introduce the dataset, training process, comparison
experiments, and ablation study, respectively.

Construction of dataset
A dataset for the color reconstruction of ancient paintings is established to
train and test the proposed model. Firstly, 214 paintings are selected,
including the styles of ink wash, blue and green, and light crimson from
different dynasties. These paintings are then cropped into 512× 512,
excluding those with overly uniform colors like pure white or black. This
leads to 3888 sample images. The construction process is shown in Fig. 5.
3828 samples are used as the training set, and 60 samples are used as the test
set. The number of samples is detailed in Table 1, and some samples are
shown in Fig. 6.

Training process
After testing, the weights for the model’s loss function are set to λccp ¼ 5,
λs ¼ 1, λm ¼ 1500, and λcyc ¼ 10. Adam optimizer is used to update the
weights. The initial learning rate is set to 0.00001. The model is trained for
80,000 iterations with a batch size of 2. Training and testing are performed
on a single NVIDIA RTX 3090 GPU.

The curve of the loss function of the proposedmodel during training is
displayed in Fig. 7. The lighter line represents the raw loss function curve,
while the darker line shows the smoothed curve obtained using Tensor-
Board. A logarithmic scale is used for the vertical axis to clearly depict the
convergence trend of the loss function. Obviously, the model’s loss steadily
decreases and eventually stabilizes as iterations increase. This indicates that
the model converges stably, leading to effective color reconstruction of
ancient paintings.

Experimental results
The color reconstructed results on the constructed dataset are shown in
Fig. 8. By comparing Fig. 8a with Fig. 8c, the proposed model effectively
preserves the details of compositional elements like mountains, trees, and
rocks of the degraded paintings. For instance, in Fig. 8c, the boundaries of
the tree are distinct in the first row, the original lines of the river are pre-
served in the second row, and the contours of themountain are maintained
in the third row.

By comparing Fig. 8b with Fig. 8c, the model successfully transfers the
color style of the reference paintings. For example, in Fig. 8c, the color of the
rocks in the first row is similar to that of the reference painting, the overall
greenish tint in the second row matches the reference, and the color of the
mountains in the third row is similar to that of the reference painting.

In summary, the proposed model is demonstrated to be effective for
color reconstruction of ancient paintings in ink wash, blue and green, and
light crimson styles.

Comparison experiments
To verify the effectiveness of the proposed model, ArtFlow28, PCA-KD41,
Photo-WCT242, DTP43, CAP-VSTNet10, and CCPL40 are selected for com-
parison. ArtFlow develops a flow-based method for natural image style
transfer. PCA-KD employs knowledge distillation to construct models for
natural image style transfer. PhotoWCT2 uses blockwise training and high-
frequency residual skip connections for style transfer. DTP creates a model
incorporating correlation and generationmodules to perform style transfer
on input images. CAP-VSTNet introduces a flow-based model for natural
image style transfer. CCPL devises a versatile method for style transfer.

Qualitative comparison. To comprehensively evaluate the proposed
model, faded ancient paintings are selectedwith inkwash, blue and green,
and light crimson styles, respectively. Reference paintings are chosen
based on the same styles, similar compositional elements, and good color
preservation.

Fig. 5 | Dataset construction process.

Table 1 | Number of samples of constructed dataset

Sample style Training set Test set Total

ink wash 839 20 859

blue and green 1649 20 1669

light crimson 1340 20 1360

Total 3828 60 3888
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The comparative results of different models are shown in Fig. 9. In
Fig. 9c, CAP-VSTNet preserves the content details well but fails to recon-
struct color accurately. The color of the mountains in the third row differs
significantly from the reference painting, and the color of the mountains in
the upper part of the sixth row is not accurately reconstructed. In Fig. 9d,
CCPL produces unsatisfactory color reconstructions. The color of the
mountains in the third rowdeviates significantly fromthe referencepainting,
and the color of the lower-right mountain in the fifth row is not accurately
reconstructed. The results of ArtFlow are similar in style to the reference
paintings in Fig. 9b.However, noticeable color inconsistencies appear due to
the lack of matching color and content features between input images.
Details of ancient paintings are notwell preserved compared to the degraded
paintings, resulting in blurry details. Specifically, in Fig. 9e, significant color
inconsistency appears in the upper part of the third row, and detail loss is
observed in the mountains in the upper right of the fifth row. PCA-KD
preserves content details in Fig. 9f, but the color still shows some differences
from that of the reference paintings. For example, the first and fifth rows are
overall blurry, and the colors of the mountain in the third row are not
accurately reconstructed. PhotoWCT2 preserves content details but fails to
reconstruct colors accurately in Fig. 9g. Incorrect colors are seen around the
branches of the first row and the trees on the right side of the fifth row. The

results of DTP show color deviations and unclear details in Fig. 9h. The
colors of the second and third rows differ from those of the reference
paintings, and the details of the tree on the right side of the fifth row are
blurred.

In Fig. 9i, the proposedmodelfirst incorporates aDual PoolingChannel
Attention module to correct color inaccuracies. Then, a Content Adaptive
Feature Extraction module is built to improve color reconstruction for dif-
ferent backgrounds and elements in ancient paintings. Lastly, theContrastive
Coherence Preserving Loss is introduced to enhance local color reconstruc-
tion. In conclusion, the proposedmodel effectively preserves painting details
and improves color reconstruction, both globally and locally.

Quantitative comparison. The experimental results in Fig. 9 correspond
to the quantitative metrics presented in Tables 2–4, which represent the
results for inkwash, blue and green, and light crimson styles, respectively.
Structural Similarity (SSIM)44 and Gram Loss10 are used as evaluation
metrics. SSIM calculates the preservation of content details, while Gram
Loss evaluates the color reconstructed effectiveness. A higher SSIM
indicates greater structural similarity between the degraded and recon-
structed paintings, while a lower Gram Loss indicates closer color style
similarity between the reconstructed and reference paintings.

Fig. 7 | Curve of loss function changes.

Fig. 6 | Samples of the constructed dataset. a The
Ink wash samples. b The blue and green samples.
c The light crimson samples (The first row is the
degraded paintings, and the second row is the
reference paintings).
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Taking the results for the inkwash style as an example, it is evident that
CAP-VSTNet has relatively poor color reconstruction, resulting in a high
Gram Loss. CCPL shows unsatisfactory color reconstruction and fails to
effectively preserve content details, resulting in lower SSIM and higher
Gram Loss compared to the proposed model. ArtFlow performs poorly in
preserving the structural details of the degraded paintings, resulting in a low
SSIM. PCA-KD has relatively poor color reconstruction, resulting in a high
Gram Loss. PhotoWCT2 fails to reconstruct the color of the ancient
paintings effectively, resulting in a high Gram Loss. DTP shows poor color
reconstruction and detail loss, thus having lower SSIM and higher Gram
Loss compared to the proposed model. The same conclusion can be drawn
for the other two styles.

The proposed model firstly incorporates a Dual Pooling Channel
Attention module to correct color inaccuracies. Secondly, a Content
Adaptive Feature Extraction module is constructed to handle different
backgrounds and compositional elements in ancient paintings. Lastly, the
Contrastive Coherence Preserving Loss is introduced to improve local
reconstruction. In conclusion, the proposed model achieves the highest
SSIM and the lowest Gram Loss, achieving the best performance in color
reconstruction.

Ablation study
Anablation experiment is conductedon the constructeddataset to verify the
effect of the Dual-Pooling Channel Attention module (DPCA), Content-
Adaptive Feature Extraction module (CAFE), and Contrastive Coherence
Preserving Loss (CCPL) on the reconstructed ability of the proposedmodel,
including both qualitative and quantitative analysis.

The results of the ablation experiments for different modules are
shown in Fig. 10, Fig. 11, and Fig. 12, respectively. DPCA improves the
model’s ability to match and extract image features by assigning different
weights to the image channels, thereby reducing inaccurate colors. By

comparing Fig. 10c with Fig. 10d, after adding the DPCA, inaccurate colors
around the leaves in the reconstructed paintings are reduced. CAFE adjusts
convolution kernel parameters based on the differences in background and
content, enhancing color reconstruction for the background and various
elements. Figure 11c and d show that, when the CAFE is added, the back-
ground color of the reconstructed painting is more similar to that of the
reference painting, improving the overall color reconstruction. CCPL
enhances the model’s focus on image localization by constraining local
features, thereby improving the local color reconstruction. Figure 12c and d
show that, after adding CCPL, the color of the stones on the right side of the
painting is closer to that of the reference painting, improving local recon-
struction. These comparisons demonstrate that each proposed module
positively impacts the model’s performance in color reconstruction.

The experimental results in Figs. 10–12 correspond to the quantitative
metrics presented in Table 5. The DPCA focuses on prominent features by
assigningweights to image channels, enhancing themodel’s ability tomatch
and extract colors.WithoutDPCA, themodel produces noticeable incorrect
colors. The CAFE improves the color reconstruction of backgrounds and
various elements by adjusting convolutional kernel parameters. In the
absence of CAFE, color reconstruction of the backgrounds is less accurate.
The CCPL enhances the model’s ability to reconstruct local colors by
constraining local features. Without CCPL, the model performs poorly in
reconstructing local colors. The above analyses indicate that removing the
proposedmodules results in lower SSIMandhigherGramLoss compared to
the proposedmodel, demonstrating the significance of themodules in color
reconstruction.

The proposed model firstly incorporates a Dual Pooling Channel
Attention module to correct color inaccuracies. Secondly, a Content
Adaptive Feature Extraction module is constructed to improve the color
reconstruction of backgrounds and elements. Lastly, the Contrastive
Coherence Preserving Loss is introduced to enhance local color

Fig. 8 | Color reconstructed results of the
proposed model. a Degraded ancient paintings;
b Reference paintings; c Reconstructed results
(Rows 1, 2, and 3 show the reconstructed results in
ink wash, blue and green, and light crimson styles,
respectively).
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reconstruction. In conclusion, the proposed model effectively preserves the
details of ancient paintings and addresses the issues of fading and color
changes. It reconstructs paintings with consistent colors, achieving better
results both globally and locally.

Experiments on landscape painting dataset
To demonstrate the generalization ability of the proposed model, it is
trained and tested on a landscape painting dataset45, and compared with
the contrast models. This dataset contains 2192 landscape painting
samples with size of 512× 512, which are obtained from open-source
museums. 2152 samples are used as the training set, and 40 samples are
used as the test set.

The experimental results are shown in Fig. 13, with the corre-
sponding quantitative metrics shown in Tables 6–8, which represent the

Fig. 9 | Comparison of reconstructed results using different models (Red boxes
are used for comparison of details). a Degraded ancient paintings. b Reference
paintings. c CAP-VSTNet. d CCPL. e ArtFlow. f PCA-KD. g PhotoWCT2. h DTP.

iOurs (Rows 1 and 2 correspond to the style of ink wash, rows 3 and 4 correspond to
the style of blue and green, and rows 5 and 6 correspond to the style of light crimson).

Table 2 | Comparison of evaluation metrics (ink wash style)

Model SSIM ↑ Gram Loss ↓

CAP-VSTNet 0.940 0.03917

CCPL 0.705 0.05946

ArtFlow 0.689 0.00658

PCA-KD 0.949 0.05046

PhotoWCT2 0.763 0.03365

DTP 0.918 0.00836

Ours 0.973 0.00242

The bold values indicate the best performance in each table.

Table 3 | Comparison of evaluation metrics (blue and
green style)

Model SSIM ↑ Gram Loss ↓

CAP-VSTNet 0.885 0.00125

CCPL 0.668 0.02165

ArtFlow 0.673 0.00249

PCA-KD 0.903 0.01528

PhotoWCT2 0.706 0.02154

DTP 0.893 0.01079

Ours 0.938 0.00034

The bold values indicate the best performance in each table.

Table 4 | Comparison of evaluation metrics (light
crimson style)

Model SSIM ↑ Gram Loss ↓

CAP-VSTNet 0.784 0.01220

CCPL 0.681 0.01639

ArtFlow 0.650 0.00706

PCA-KD 0.724 0.05648

PhotoWCT2 0.741 0.10012

DTP 0.778 0.04165

Ours 0.822 0.00685

The bold values indicate the best performance in each table.

https://doi.org/10.1038/s40494-025-01595-0 Article

npj Heritage Science |          (2025) 13:246 8

www.nature.com/npjheritagesci


results for ink wash, blue and green, and light crimson styles, respectively.
Taking the results for the blue and green style as an example, CAP-
VSTNet has relatively poor color reconstruction in Fig. 13c, resulting in a
highGramLoss. The results ofCCPL inFig. 13d showunsatisfactory color
reconstruction and fail to effectively preserve content details, resulting in
lower SSIM and higher Gram Loss compared to the proposed model.

ArtFlow fails to preserve the details of the degraded paintings in Fig. 13e,
resulting in blurred reconstructions with the lowest SSIM. The recon-
structed colors of PCA-KD in Fig. 13f still differ from the reference
paintings, resulting in a high Gram Loss. PhotoWCT2 produces unsa-
tisfactory color reconstructions in Fig. 13g, resulting in the highest Gram
Loss. The results of DTP in Fig. 13h show unclear details and poor color
reconstruction, resulting in lower SSIM and higher Gram Loss compared
to the proposed model. The same conclusion can be drawn for the other
two styles.

In Fig. 13i, the proposed model effectively preserves the details of
ancient paintings and produces consistent colors in the reconstructed
results, leading to the highest SSIM and the lowest Gram Loss.

In conclusion, the results from both the constructed ancient painting
dataset and the existing landscape painting dataset demonstrate that, the
proposedmodel performswell in color reconstruction of paintings, proving
its applicability in this domain.

Fig. 10 | Comparison before and after using DPCA (Red boxes are used for comparison of details). a Degraded ancient painting. b Reference painting. cWith DPCA.
d Without DPCA.

Fig. 11 | Comparison before and after using CAFE (Red boxes are used for comparison of details). a Degraded ancient painting. b Reference painting. c With CAFE.
d Without CAFE.

Fig. 12 | Comparison before and after using CCPL (Red boxes are used for comparison of details). a Degraded ancient painting. b Reference painting. c With CCPL.
d Without CCPL.

Table 5 | Evaluation metrics for the ablation study

Model SSIM ↑ Gram Loss ↓

Without DPCA 0.788 0.00872

Without CAFE 0.802 0.01528

Without CCPL 0.775 0.01070

Ours 0.805 0.00794

The bold values indicate the best performance in each table.
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Conclusion
A color reconstruction model for ancient paintings is proposed based on
dual pooling attention and pixel adaptive convolution. Firstly, a Dual
PoolingChannelAttentionmodule is proposed to address inaccurate colors
in reconstructed results. Thismodule enhances themodel’s ability to extract
features by assigning different weights to the image channels, thereby
reducing inaccurate colors. Secondly, to solve the problem of inconsistent
color reconstructiondue to variations inbackgroundandcontent, aContent
Adaptive Feature Extraction module is constructed. This module dynami-
cally adjusts the convolutional parameters based on predefined features to
adaptively extract features of ancient paintings, thereby improving the

overall color reconstruction of ancient paintings. Lastly, a Contrastive
Coherence Preserving Loss is introduced to solve the problem of poor local
color reconstruction. The loss enhances the model’s focus on image loca-
lization by constraining local features, thereby improving the local color
reconstruction. Experiments are conducted on the constructed color
reconstruction dataset of ancient paintings, including comparison experi-
ments and ablation studies. The results show that the proposed model
effectively preserves the structural information and content details of
ancient paintings, while adapting to different backgrounds and content,
achieving better color reconstructionboth globally and locally. Additionally,
color reconstruction experiments are performed on a landscape
painting dataset, proving the effectiveness and applicability of the
proposed model.

Data availability
The datasets used and analyzed in the current study are available from the
corresponding author by reasonable request.
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