
npj | heritage science Article

https://doi.org/10.1038/s40494-025-01677-z

The impact of spatial perception at
agricultural heritage sites on tourists’
carbon reduction behavior

Check for updates

Shuaijun Lin1,2, Hongfeng Zhang2 , Xiaowei Wang2 & Johnny F. I. Lam2

With “Carbon Neutral” goals and rural revitalization strategies, developing low-carbon tourism at
agricultural heritage sites has become academically significant. Existing research overlooks how
agricultural traditions, human-land relationships, and cultural diversity influence tourists’ carbon-
reducing behaviors at heritage sites. Using XGBoost-SHAP machine learning models, this study
explores how spatial perception influences tourists’ carbon reduction behaviors. Findings reveal that
land use coordination perception and cultural heritage value recognition are dominant factors,
contributing 58.267% and 57.810% to transportation and recreational behaviors, respectively.
Different spatial perception elements show differentiated impacts: immediate carbon reduction
behaviors are primarily influenced by land use coordination and traditional agricultural features, while
sustained behaviors depend on traffic accessibility and interpretation system performance.
Significant synergistic effects exist among spatial elements, particularly between land use
coordination and cultural heritage value recognition. This study reveals nonlinear relationships
between spatial perception and carbon reduction behaviors, providing theoretical guidance for
heritage site optimization.

In recent years, with the continued advancement of China’s ecological
civilization construction, its proposal of “Carbon Neutral and Peak Car-
bon” goals has indicated a direction for low-carbon transformation across
various industries. At theUnitedNationsGeneral Assembly in September
2020, China explicitly proposed the strategic goals of striving to achieve a
carbon peak before 2030 and carbon neutrality before 2060. In addition,
its implementation of the rural revitalization strategy has provided new
opportunities for protecting and developing agricultural heritage sites. As
a crucial approach to rural revitalization, integrating agriculture and
tourism has become an effective pathway for promoting rural economic
transformation, inheriting farming culture, and increasing farmers’
income1. However, carbon emissions from tourism activities, including
transportation, accommodation, and catering, have become increasingly
prominent. Jones et al. found that tourism carbon emissions account for
approximately 8% of global carbon emissions and show a continuing
upward trend2. With this percentage is potentially higher at agricultural
heritage sites due to their remote locations and increased transportation
needs. The dualmandate of these sites - preserving traditional agricultural
systems while promoting sustainable tourism -makes understanding and
promoting tourists’ carbon reduction behavior particularly crucial.

However, current research has not adequately addressed how the dis-
tinctive spatial characteristics of agricultural heritage sitesmight influence
visitors’ environmental behaviors.”

Regarding the influence mechanisms of tourists’ carbon reduction
behavior, academia has formed twomain perspectives. One emphasizes the
decisive role of individual factors, considering environmental awareness,
values, and knowledge levels as key influences on low-carbon behavior3,4.
The other focuses on the role of external contexts, advocating for guiding
low-carbon behavior through external interventions such as facility
improvements and incentivemeasures5. However, this “individual-oriented
—external incentive” research paradigm may overlook the spatial unique-
ness of agricultural heritage sites. As a unique cultural landscape space,
agricultural heritage sites not only carry traditional production and living
functions but also provide distinctive experiential venues for modern
tourism activities6. Research has shown that spatial environments sig-
nificantly influence tourists’ cognitive evaluation, emotional experience, and
behavioral decision-making7. Particularly in agricultural heritage sites, the
integrity of traditional agricultural production systems8, the harmony of
human-land relationships9, and the diversity of cultural values10 may all
profoundly impact tourist behavior.
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Spatial research on agricultural heritage sites has evolved from mor-
phological description to functional analysis and then to conservation
management. Early studies mainly focused on identifying and classifying
spatial morphological characteristics. Zhou et al. constructed an evaluation
index systemfor the spatial characteristicsof agricultural heritage sites based
on morphological methods, revealing the spatial organization patterns of
different heritage site types11. Wang et al. quantitatively analyzed spatial
pattern evolution in typical terraced heritage sites using geographic infor-
mation system technology, discovering that topographical conditions and
water availability are key factors influencing spatial layout12.

As research advanced, studies began to focus on the evolution and
adaptability of spatial functions. Su et al. found through comparative studies
that agricultural heritage sites often maintain their traditional functions
while reasonably introducing modern tourism functions13. Zhu et al.
highlighted that spatial functional transformation should be premised on
protecting traditional agricultural systems while moderately developing
tourism functions such as sightseeing and experiential activities14. Regarding
conservation management, Shen and Chou proposed a conservation fra-
mework based on cultural landscape theory, emphasizing the coordinated
development of production, living, and ecological spaces15.

“Previous researchon spatial perception’s influenceon tourist behavior
has evolved through several key stages. Early studies focused on how phy-
sical spatial elements affect tourist satisfaction and experience quality,
demonstrating that spatial layout and accessibility significantly impact
tourists’ behavioral intentions16. Research then expanded to examine the
relationship between spatial perception and environmental behavior,
revealing that tourists’ perception of natural landscape integrity positively
correlates with their environmental awareness and protective behaviors17.
Spatial perception influences pro-environmental behavior throughmultiple
pathways: direct cognitive impact, emotional connection, and place
attachment18. Recent studies have specifically examined spatial perception’s
role in sustainable tourism behaviors, showing that tourists’ understanding
of destination spatial characteristics significantly affects their willingness to
participate in carbon reduction activities19. However, the specific mechan-
isms through which spatial perception affects carbon reduction behavior in
agricultural heritage sites—unique spaces combining traditional agri-
cultural systems, cultural landscapes, and modern tourism functions—
remain understudied.”

Regarding spatial perception research, the focus has expanded from
single physical environmental elements to multidimensional comprehen-
sive evaluation. Yang et al. categorized tourism spatial perception into
dimensions such as landscape esthetics, spatial scale, and accessibility based
on multivariate data analysis20. Zhang et al. further identified core dimen-
sions in agricultural heritage site research, including productive landscape,
cultural landscape, and facility perceptions. Studies examining the influ-
encing factors indicate that multiple factors affect tourists’ spatial
perception21. Dai and Zheng discovered that individual characteristics (e.g.,
age and education level), visitation experience, and environmental attitudes
significantly influence the intensity of spatial perception22. A longitudinal
study byMcKercher et al. found that seasonal changes and tourist flow also
affect spatial perception outcomes23. Additionally,Weng et al. noted that the
quality of interpretation systems and the professionalism of tour guides can
significantly enhance visitors’ understanding of heritage sites’ spatial
characteristics24. Regarding the mechanism of action, Pai et al. confirmed
the positive impact of spatial perception on tourist satisfaction and revisit
intention25. Additionally, Albayrak et al. found that positive spatial per-
ception helps extend tourists’ length of stay and increase tourism
consumption26. However, research on the relationship between spatial
perception and environmental behavior, particularly carbon reduction
behavior, remains scarce.

Carbon reduction research in the tourism field also shows a trend
shifting from quantitative assessment to behavioral intervention. Regarding
carbon footprint accounting, Zha et al. established a carbon emission
accounting system for tourism destinations, quantifying the carbon emis-
sion contributions of different tourism activities27. Cao et al. systematically

evaluated the spatiotemporal characteristics of tourism carbon emissions in
Guilin using life cycle assessment methods28. These studies provide a
foundation for understanding the composition of tourism carbon emis-
sions. Regarding environmental behavior research, Wang et al. confirmed
the influence of environmental attitudes, subjective norms, and perceived
behavioral control on low-carbon tourism behavior based on the theory of
planned behavior3. Lin et al. found that the dissemination of environmental
knowledge and facility convenience are key factors in promoting tourists’
carbon reduction behavior4. Dolnicar et al. further demonstrated that
contextual cues and incentive mechanisms can effectively promote envir-
onmentally friendly behavior among tourists5. However, existing studies
have mainly focused on individual psychological and external intervention
factors, with limited consideration of the influence of spatial environmental
characteristics.

In recent years, studies have attempted to explore the relationship
between spatial perception and tourist behavior using various methods.
Traditional research mainly employs statistical methods such as structural
equation modeling (SEM) and multiple linear regression. Rao et al. used
SEM to examine the relationship between scenic area spatial environment
and tourist environmental behavior, finding limitations in handling non-
linear interaction effects29.Wang et al. applied SEM to study the influence of
tourism spatial perception on tourists’ low-carbonbehavior, but theirmodel
showed insufficient explanatory power3. Vázquez-Parra et al. noted that
SEM has strict requirements for data normality and struggles to handle
multicollinearity issues among variables30. Gao et al. used multiple linear
regression to establish models of tourists’ viewing willingness for various
walking corridors31. Studies byKline32 andDarlingtonandHayes33 indicated
that traditional statistical methods often overlook complex interactions
among variables, affecting prediction accuracy. With the development of
machine learning methods, studies have begun experimenting with meth-
ods such as support vector machine (SVM) and random forest (RF) to
examine tourist behavior. Yuan et al. used RF algorithms to predict tourist
spatial perception, which improved prediction accuracy but struggled to
explain feature influence mechanisms34. Yin and Jung used an SVM to
examine the impact of scenic area spatial characteristics on tourists’
experience; however, the model’s “black box” nature limited the practical
guidance value of their findings35. Rudin et al. further highlighted that tra-
ditional machine learning methods still require improvement in stability
and interpretability when handling high-dimensional features and non-
linear relationships36. Based on these methodological limitations, our study
adopts the eXtreme Gradient Boosting (XGBoost)-SHapley Additive
exPlanations (SHAP) framework to analyze the influence of agricultural
heritage site spatial perception on tourists’ carbon reduction behavior. This
method not only effectively handles nonlinear relationships and feature
interactions but also provides a theoretical foundation for explainingmodel
prediction results through SHAP value analysis.

A literature review identified the following limitations in existing
research. Firstly, spatial research of agricultural heritage sites has mainly
focused on morphological characteristics and functional evolution, with
limited systematic research on spatial perception. Secondly, spatial per-
ception studies have mainly focused on traditional tourist behavior, lacking
correlation analysis with carbon reduction behavior. Thirdly, carbon
reduction behavior research rarely considers the influence of spatial envir-
onmental characteristics. Fourthly, existing research methods struggle to
effectively capture the complex nonlinear relationships between spatial
perception and carbon reduction behavior. Fifthly, existing research has not
distinguished between the differential characteristics of immediate and
sustained carbon reduction behaviors, overlooking potential differences in
influencemechanisms amongdifferent types of carbon reductionbehaviors.
Based on these limitations, our study selects the typical agricultural heritage
site in Anji, Zhejiang, as a case study, employing the XGBoost-SHAPmodel
to explore how spatial perception influences tourists’ carbon reduction
behavior.

Based on these research gaps, this study adopts an innovative
XGBoost-SHAP methodological framework to analyze the complex
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nonlinear relationships between spatial perception and tourists’ carbon
reduction behavior in agricultural heritage sites. Unlike traditionalmethods
that assume linear relationships or struggle with feature interactions, the
XGBoost-SHAP framework enables comprehensive analysis of both direct
and interaction effects through three key analytical capabilities. First, it
provides an exact calculation of individual feature impacts through localized
decomposition of model predictions. Second, it enables the detection of
complex interaction patterns between spatial elements, quantifying syner-
gistic and antagonistic effects. Third, it offers both global feature importance
rankings and local interpretation capability for individual cases, supporting
a more nuanced understanding of spatial perception impacts. Through this
advanced analytical approach, this study attempts to answer the following
questions: (1) How do spatial perception elements in agricultural heritage
sites influence tourists’ carbon reduction behavior? (2) Are there differ-
entiated influence mechanisms for different types of carbon reduction
behavior? (3) Do interactions exist among spatial perception elements? (4)
How do these interactions affect the formation of carbon reduction
behavior?

Methods
This study developed a prediction model based on the XGBoost algorithm
to explore the intrinsic correlation between tourists’ spatial perception and
carbon reduction behavior. In the model construction process, tourists’
spatial perception was used as the predictor variable, which encompasses
three dimensions: productive landscape perception, cultural landscape
perception, and facility perception. Tourists’ carbon reduction behaviorwas
used as the response variable, which encompasses four dimensions: trans-
portation behavior (TB), consumption behavior (CB), recreational behavior
(RB), and environmental protection behavior (EPB). This study’s specific
implementation pathway was as follows. Firstly, the three dimensions of
tourists’ spatial perception were used as explanatory variables to construct
the input layer of the prediction model. Secondly, the XGBoost model was
trained on the data to reveal the nonlinear coupling relationship between
spatial perception dimensions and carbon reduction behavior. Five-fold
cross-validation was adopted to optimize the model hyperparameters, and
the model’s predictive performance was quantitatively validated through
multidimensional evaluation metrics. Finally, SHAP value analysis and
partial dependence plots (PDPs) were used to analyze model interpret-
ability, and optimization strategies for promoting tourists’ low-carbon

behavior were proposed based on the model interpretation results. Figure 1
presents the research framework.

Study area
This study selected Huangdu Village (119°40′12″–119°41′24″E, 30°28′
48″–30°29′36″N) in Anji County, Huzhou City, Zhejiang Province as the
research area. Located in the hilly northeastern region of Anji County,
Huangdu Village has a subtropical monsoon climate characterized by
warm, humid conditions and abundant rainfall. It covers an area of 11.5
square kilometers, including 14,167mu of mountainous forest land, with
82% forest coverage. The natural conditions are suitable for growing Moso
bamboo and white tea, with 90% of households engaged in white tea-
related work.

Huangdu Village represents an exemplary case for studying the rela-
tionshipbetweenspatial perception andcarbon reductionbehavior for three
key reasons. First, the village’s traditional bamboo forest-tea garden com-
posite system epitomizes how agricultural heritage sites inherently embody
low-carbon principles through their sustainable land-use practices, making
them natural laboratories for studying environmental behavior. The site
maintains complete spatial elements of traditional agricultural systems
while successfully integrating modern tourism functions, receiving over
305,000 tourists annually. This provides an ideal setting for examining how
heritage spatial characteristics influence visitor behavior. Second, as a core
component of the “Anji White Tea Traditional Cultivation System” agri-
cultural heritage and the birthplace of the “TwoMountains” theory (which
balances ecological preservation with economic development), the village
demonstrates exceptional representativeness of agricultural heritage sites
that successfully combine traditional wisdom with contemporary sustain-
able development. Third, thefindings from this case study can informglobal
agricultural heritage conservation practices, particularly in how spatial
design and preservation can promote environmentally conscious tourist
behavior, thereby contributing to both heritage protection and carbon
reduction goals.

The village scale was selected as the research unit for providing clear
spatial boundaries and complete system elements, enabling systematic
observation of how agricultural heritage spatial characteristics influence
tourist behavior. This methodological approach allows findings to be
effectively applied to similar heritage sites globally, particularly in devel-
oping integrated conservation and sustainable tourism strategies.
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Fig. 1 | Study flowchart.
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Questionnaire design
This study designed a survey questionnaire to examine the influence of
spatial perception on tourists’ carbon reduction behavior in agricultural
heritage sites, using Huangdu Village as the research subject. The ques-
tionnaire collected data anonymously, with respondents informed that data
would be used solely for academic research purposes. The questionnaire
comprised four main parts. The first part covered basic information,
including demographic characteristics such as gender, age, education level,
occupation, monthly income, place of origin, and number of visits. The
second part evaluated tourists’ spatial perception in Huangdu Village,
containing 21 items measured on a five-point Likert scale (1 = very poor/
very low, 5 = very good/very high). The items were divided into three
dimensions: agricultural heritage characteristics, landscape cultural ele-
ments, and tourism infrastructure. The third part focused on measuring
tourists’ carbon reduction behavioral intentions, including 12 items also
measured on a five-point Likert scale (1 = very low/very few, 5 = very high/
many). The items examined aspects of transportation mode choice,
accommodation preferences, dining behavior, shopping considerations,
activity participation, and resource conservation. The fourth part consisted
of open-ended questions soliciting respondents’ suggestions for improving
HuangduVillage’s spatial environment and promoting low-carbon tourism
development. The questionnaire design and rigorous data collectionprocess
supported exploring the relationship between spatial perception and tour-
ists’ carbon reduction behavior in agricultural heritage sites.

The measurement quality of the research instruments was evaluated
through comprehensive reliability and validity analyses. The internal con-
sistency assessment yielded a Cronbach’s alpha coefficient of 0.709 for the
21-item spatial perception scale, exceeding the conventional threshold of
0.7. The construct validity examination through Kaiser-Meyer-Olkin test
demonstrateda valueof 0.56, indicatingmoderate sampling adequacy,while
Bartlett’s test of sphericity yielded significant results (χ² = 14024.675, df =
210, p < 0.001), confirming the correlation matrix’s factorability and the
data’s structural validity for subsequent analyses.

The implementation of the XGBoost-SHAP-PDP methodological
framework introduces important considerations regarding measurement
requirements. Unlike traditional statistical approaches that demand strin-
gent measurement properties, machine learning algorithms exhibit
enhanced robustness to moderate reliability and validity coefficients due to
several inherent characteristics. First, XGBoost’s tree-based ensemble
architecture incorporates both L1 and L2 regularization terms, effectively
mitigating the impact of measurement noise and potential multicollinearity
issues. Second, the algorithm’s iterative learning process through gradient
boosting enables it to capture complexnonlinearpatternswhilemaintaining
stability in feature importance estimation, even with moderate measure-
ment precision. Furthermore, the integration of SHAP values and PDP
analyses transcends conventional measurement limitations by decompos-
ing model predictions into interpretable feature contributions and inter-
action effects, thereby providing robust insights into spatial perception-
behavior relationships independent of classical measurement theory con-
straints. Thismethodological advancement alignswith recent developments
in machine learning applications to social science research, where the focus
has shifted from strict measurement thresholds to more flexible, yet rigor-
ous, approaches in handling real-world behavioral data37.

Data sources
This study collected data through questionnaire surveys conducted from
August to October 2024, employing both online and offline approaches,
with questionnaires distributed at major scenic spots, tourist distribution
centers, and rest areas in Huangdu Village. In order to ensure a repre-
sentative sample, the survey combined random sampling with quota sam-
pling, randomly surveying tourists during different periods (weekdays/
weekends, morning/afternoon). During the preliminary survey phase, the
research team distributed 50 questionnaires at the research site in August
2024 for pre-testing. The questionnaire’swording and logical sequencewere
optimized and adjusted based on the pre-test results.

The formal survey distributed 580 questionnaires. After eliminating
invalid questionnaires with incomplete responses and obvious pattern
answers, 532 valid questionnaires were obtained, yielding an effective
response rate of 91.72%. A double-entry and cross-checking method was
employed during the data entry phase to ensure accurate data entry. The
collected data were descriptively analyzed using SPSS. The XGBoost model
was constructed, and SHAP and PDP values were calculated using Python
to conduct an in-depth analysis of how spatial perception influences tour-
ists’ carbon reduction behavior at agricultural heritage sites. To ensure the
reliability of research results, the research team systematically processed
outliers and missing values during the data preprocessing stage. Outliers
were identified and processed using the box-plotmethod. Since the number
ofmissing valueswas small,methods such asmean andmedian substitution
were appliedaccording to itemcharacteristics to ensure the scientific validity
of the constructed model.

This study constructed an explanatory variable framework for spatial
perception through systematic literature analysis and theoretical synthesis.
The framework operationalizes spatial perception into measurable indica-
tors across three primary dimensions: productive landscape perception,
cultural landscape perception, and facility perception, encompassing
21 specific observational indicators (Table 1).

The productive landscape perception dimension comprises nine
indicators based on observable characteristics of agricultural heritage sites.
Agricultural production functional integrity (APFI) measurement draws
fromWang et al.’s validated framework, which enables tourists to evaluate
visible elements of traditional agricultural systems. Yang et al. demonstrate
that ecosystem service perception (ECSP) can be effectively measured
through tourists’ assessmentof observable environmental benefits,whileLiu
et al. validate the measurability of traditional agricultural characteristics
recognition (TACR) through visitor evaluations.

The cultural landscape perception dimension incorporates six indi-
cators that quantify tourists’ direct observations of heritage elements. Fol-
lowing Kim et al.’s empirically validated approach, cultural heritage value
recognition (CHVR) measurement focuses on visitors’ perception of
observable heritage features. Historical cultural atmosphere perception
(HCAP) assessment builds on Halkos et al.’s tested framework, which
enables systematic evaluation of experiential elements16. These indicators
transform abstract cultural concepts into measurable variables based on
tourists’ direct experience at the site.

The facility perception dimension contains six indicators that quantify
tourists’ interaction with site infrastructure. Weng et al.’s methodology
validates the measurement approach for traffic accessibility (TRAC), while
Pai et al.’s framework confirms the measurability of service facility con-
venience perception (SFCP). Each indicator in this dimension enables
systematic evaluation of observable facility characteristics through visitor
assessments.

The study employs a systematic framework tomeasure tourists’ carbon
reduction behaviors, categorizing observable actions into four dimensions
based on behavioral characteristics. This classification enables compre-
hensive assessment of both immediate and sustained environmental
behaviors in heritage tourism contexts (Table 2).

TB measurement follows Jones’ validated framework, focusing on
observable modal choices in site access and internal movement. Lin et al.’s
empirical studies confirm the reliability of this measurement approach in
heritage tourism contexts, demonstrating its effectiveness in capturing
actual behavioral patterns rather than stated intentions.

CB assessment builds on Dolnicar and Demeter’s measurement fra-
mework, enabling systematic evaluation of observable consumption choi-
ces. Wang et al.’s validation studies demonstrate the framework’s
effectiveness in quantifying sustainable consumption patterns through
visitor assessments.

RB measurement incorporates Lee and Lee’s validated approach,
focusing on quantifiable activity choices that impact carbon emissions. Gao
et al.’s empirical studies confirm the framework’s reliability in measuring
actual RBs through systematic assessment.
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Table 1 | Detailed information on factors influencing tourists’ carbon reduction behavior in this study

Category Indicators of spatial perception Abbreviation Description

Production landscape
perception

Agricultural production functional
integrity

APFI This indicator evaluates the preservation and continuity of traditional agricultural
production systems and their functional completeness within the heritage site.

Ecosystem service perception ECSP This indicator assesses visitors’ awareness and perception of the ecosystem services
provided by traditional agricultural systems, including biodiversity conservation and
environmental protection.

Traditional agricultural
characteristics recognition

TACR This indicator measures the distinctiveness and recognizability of traditional
agricultural practices, techniques, and patterns specific to the heritage site.

Bamboo-tea landscape harmony BTLH This indicator evaluates the visual and functional integration of bamboo forests and tea
plantations in traditional agricultural landscapes.

Agricultural cultural landscape
esthetics

ACLA This indicator assesses the visual appeal and esthetic value of traditional farming
landscapes shaped by historical agricultural practices.

Rural landscape character
perception

RLCP This indicator measures the recognition of unique rural landscape features that reflect
local agricultural heritage and traditions.

Spatial layout rationality SPLR This indicator evaluates the traditional wisdom in the spatial arrangement of different
agricultural elements and their preservation status.

Land use coordination perception LUCP This indicator assesses the harmony between different traditional land use patterns
and their adaptation to local conditions.

Water system distribution
perception

WSDP This indicator evaluates the visibility and functionality of traditional watermanagement
systems and their integration into the landscape.

Cultural landscape
perception

Cultural heritage value recognition CHVR This indicator measures visitors’ understanding of the site’s significance as an
agricultural heritage system and its cultural value.

Historical cultural atmosphere
perception

HCAP This indicator assesses the sense of historical continuity and cultural authenticity
experienced in the heritage landscape.

Traditional characteristics
identification

TCID This indicator evaluates the recognition of distinctive local traditions and cultural
practices in agricultural heritage.

Cultural display effectiveness
perception

CDEP This indicator measures the effectiveness of heritage interpretation and display in
conveying agricultural cultural values.

Interpretation system performance ISYP This indicator assesses the quality and effectiveness of educational and interpretative
facilities in explaining agricultural heritage.

Participation experience depth PEXD This indicator evaluates visitors’ engagementwith traditional agricultural activities and
cultural experiences.

Facility perception Transportation accessibility TRAC This indicator measures the ease of access to different areas within the heritage site
while maintaining landscape integrity.

Service facility convenience
perception

SFCP This indicator assesses the availability and integration of tourist facilities with minimal
impact on heritage landscapes.

Wayfinding system clarity WSYC This indicator evaluates the effectiveness of navigation aids in guiding visitors while
preserving the site’s authenticity.

Walking environment comfort WENC This indicator measures the quality of pedestrian paths that allow appreciation of
agricultural heritage features.

Resting facility comfort perception RFCP This indicator assesses the comfort and cultural appropriateness of rest areas within
the heritage landscape.

Environmental sanitation
perception

ENVP This indicator evaluates the cleanliness and maintenance of the heritage site while
preserving its traditional character.

Table 2 | Critical carbon reduction behaviors

Indicator of spatial perception Abbreviation Description

Transportation behavior TB This indicator refers to tourists’ low-carbon transportation choices when visiting agricultural heritage sites, such as
using public transportation to reach the site, choosing electric shuttle services within the site, andwalking or cycling
on designated paths to explore traditional farming areas.

Consumption behavior CB This indicator encompasses tourists’ sustainable consumption choices at agricultural heritage sites, including
purchasing local agricultural products, choosing eco-friendly accommodations, using reusable containers, and
minimizing food waste when enjoying local cuisine.

Recreational behavior RB This indicator involves tourists’ low-carbon choices during recreational activities at agricultural heritage sites, such
as participating in traditional farming experiences, choosing eco-friendly guided tours, engaging in sustainable
agricultural education activities, and respecting local farming customs.

Environmental protection
behavior

EPB This indicator encompasses tourists’direct actions toprotect the agricultural heritage environment, including proper
waste disposal, following designated paths to protect farmland, participating in agricultural conservation activities,
and supporting local environmental protection initiatives.
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EPBmeasurement follows Cao et al.’s framework, enabling evaluation
of direct conservation actions. Rao et al.’s validation studies demonstrate the
effectiveness of this measurement approach in capturing sustained envir-
onmental behaviors through visitor assessments.

XGBoost algorithm
As an optimized version of the gradient-boosting decision tree, the XGBoost
algorithm innovates by introducing second-order Taylor expansion and
regularization terms in the objective function to enhance model
performance38. Through these optimization strategies, XGBoost cannot only
evaluate the declining trend of the loss function but also effectively control
model complexity, avoiding overfitting problems39. A major advantage of
this algorithm is its immunity to multicollinearity, allowing the retention of
all influential feature variables even when they are strongly correlated40. This
study uses this algorithm to analyze the complex nonlinear relationships
between spatial perception and tourists’ carbon reduction behavior in agri-
cultural heritage sites. The specific calculation process is as follows:

(1) This study defines the datasetD = {(xi, yi): i = 1, 2…, n, xi∈Rp, yi∈
R}, where n represents the sample size, and each sample contains p features.
If k (k = 1, 2, …, K) represents the number of regression trees, xi and yi
represent the feature vector of the ith point, f k represents the regression tree,
andF represents the combination space of regression trees, themodel can be
expressed as:

ŷi ¼
XK
k¼1

f k xi
� �

; f k 2 F ð1Þ

where ŷi represents the predicted carbon reduction behavior and yi repre-
sents the actual observed data.

(2) Construction of the objective function:

Lt ¼
Pn
i¼1

lðyi; ŷiÞ þ
PK

k¼1Ωðf kÞ ð2Þ

Ωðf kÞ ¼ γT þ 1
2
λ k ωk2 ð3Þ

where lðyi; ŷiÞ represents the loss term, Ω(fₖ) is the regularization term, T
andω represent the number of leaf nodes and leaf weights, respectively, and
γ and λ are the corresponding penalty coefficients.

(3) This study introduces a second-order Taylor expansion to optimize
the objective function where gi and hi represent the first and second-order
derivatives calculated for the predicted values ŷi

t�1, respectively:

Lt ¼
Xn
i¼1

ðgif tðxiÞ þ
1
2
hif

2
t ðxiÞÞ þΩðf tÞ ð4Þ

(4) This study sets leaf node scoresωj in the algorithm to characterize
predicted values, with q xi

� �
pointing to specific leaf nodes. This study

defines Ij as the sample set of leaf node j, with complexity expressed as:

Ωðf tÞ ¼ γT þ 1
2 λ
PT
j¼1

ω2
j ð5Þ

Ij ¼ fijqðxiÞ ¼ jg ð6Þ

Mapping the sample set to the set of leaf nodes, setting
Gj ¼

P
i2Ij gi;Hj ¼

P
i2Ij hi, the optimized objective function is obtained

as follows:

Lt ¼
XT
j¼1

ðGjωj þ
1
2
ðHj þ λÞω2

j Þ þ γT ð7Þ

Theoptimal valueof leaf node j and theminimumvalueof theobjective
function are obtained by solving for the condition where the first-order
derivative of the objective function equals zero:

Lt ¼ � 1
2

XT
j¼1

G2
j

Hj þ λ
þ γT ð8Þ

The dataset was divided into a training set (425 samples) and a test set
(107 samples) at an 8:2 ratio. This study employed a systematic hyper-
parameter tuning approach to ensure optimal performance of the XGBoost
model. Grid search optimization was conducted for seven key hyperpara-
meters, including learning rate, maximum tree depth, minimum child
weight, column sampling ratio (colsample_bytree), L1 regularization
parameter (alpha), sample sampling ratio (subsample), and L2 regulariza-
tion parameter (lambda). Detailed search ranges were established for each
parameter (Table 3). This study utilized the GridSearchCV method for
automated parameter search to effectively identify the optimal combination
within the parameter space and used five-fold cross-validation to evaluate
model performance. During parameter optimization, the program selected
the optimal parameter combination byminimizing the error rate.When the
model evaluation scores no longer significantly improved in consecutive
iterations, the optimization program automatically terminated the search
process and returned the obtained optimal hyperparameter combination.
The parameter optimizationmethod used in this study not only ensured the
model’s predictive accuracy but also effectively prevented overfitting.

This study comprehensively assessed the predictive performance of the
XGBoostmodel using three complementary evaluationmetrics—coefficient
of determination (R²), root mean square error (RMSE), and mean absolute
percentage error (MAPE)—to quantitatively evaluate the model from dif-
ferent dimensions. The specific meanings and calculation methods of these
metrics are as follows:

(1) R² reflects the extent to which the model explains the variability of
the dependent variable, with values in [0,1]. The closer to 1, the better the
model’s fit. The calculation formula is:

R2 ¼ 1�
Pn

i¼1 ðyi � ŷiÞ2Pn
i¼1 ðyi � �yÞ2 ð9Þ

where yi is the actual value of the ith sample, ŷi is the corresponding pre-
dicted value, �y is the mean of the actual values, and n is the number of
samples.

(2) RMSE measures the average deviation between predicted and
actual values, with smaller values indicating greater model prediction
accuracy. The calculation formula is:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � ŷiÞ2

r
ð10Þ

(3) MAPE reflects the relative error between the predicted and actual
values, with smaller values indicating greater relative model prediction

Table 3 | Detailed XGBoost hyperparameter ranges

XGBoost hyperparameter Value range

learning_rate [0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]

max_depth [1,2,3,4,5, 6, 7, 8, 9, 10]

min_child_weight [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

colsample_bytree [0.6, 0.7, 0.8, 0.9, 1.0]

alpha [0, 0.1, 0.5, 1, 2, 3]

subsample [0.6, 0.7, 0.8, 0.9, 1.0]

lambda [0, 1, 2, 3, 4, 5]
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accuracy. The calculation formula is:

MAPE ¼ 1
n

Xn

i¼1
j yi � ŷi

yi
j× 100% ð11Þ

Algorithm interpretable analysis
This studyadopts the complementary analyticalmethodsof SHAPandPDP
to reveal how tourists’ spatial perception of the agricultural heritage site
influences their carbon reduction behavior. SHAP value analysis is used to
quantitatively evaluate the contribution of various spatial perception ele-
ments to tourists’ carbon reduction behavior. PDPs are used to visualize the
nonlinear relationship patterns between spatial perception elements and
carbon reduction behavior.

Given the potentially complex nonlinear relationships between tour-
ists’ spatial perceptions of the agricultural heritage site and their carbon
reduction behavior, this study used SHAP value analysis to interpret the
predictions of the XGBoost model37,41,42. Based on cooperative game theory,
SHAP values can quantitatively evaluate the contribution of each spatial
perception feature to the predicted carbon reduction behavior and are
calculated using the following formula:

ϕi ¼
X

S�Fnfig

jSj!ðjFj � jSj � 1Þ!
jFj! ½f S ∪ figðxS∪ figÞ � f SðxSÞ� ð12Þ

where F represents the set of all spatial perception features, S is the subset
that does not contain feature i, and f SðxSÞ denotes the predicted value using
only the subset of features S. This studymainly uses SHAP value analysis to
assess the overall importance of each dimension of spatial perception on
tourists’ carbon emission reduction behaviors; to explain the specific con-
tribution value of each spatial perception element in a single sample,
revealing its facilitating or inhibiting effect on carbon emission reduction
behaviors; and to analyze the interaction effect between spatial perception
elements and identify the key element combinations.

This study constructed a PDP to further reveal the marginal effect of
spatial perception elements on tourists’ carbon emission reduction behavior
in agricultural heritage sites43–46. The formula is as follows:

f xsðxsÞ ¼ Exc
½f ðxs; xcÞ� ¼

Z
f ðxs; xcÞpðxcÞdxc ð13Þ

where xs is the spatial perception feature to be analyzed, xc represents the
other features, and f ðxs; xcÞ is the prediction function of the XGBoost
model. The PDP analysis focuses on whether there is an evident threshold
effect between spatial perception elements and carbon emission reduction
behaviors, whether there is a difference in the pattern of influence of dif-
ferent spatial perception dimensions on carbon emission reduction beha-
viors, and how the changes in the spatial perception scores affect tourists’
carbon emission reduction behavior tendency.

Result
Evaluation of XGBoost model performance
The hyperparameter adjustment results of this study’s model are shown in
Table 4, with the four sub-models exhibiting significant consistencies in
hyperparameter configuration. Firstly, regarding tree complexity control, all
models adopt relatively small decision tree depths (max_depth = 3) and low
learning rates (learning_rate = 0.01–0.02), effectively reducing the risk of
model overfitting. Secondly, regarding sample weight control, min_-
child_weight maintains a moderate range of 1–4, ensuring model robust-
ness for small samples. Thirdly, regarding feature sampling, both
colsample_bytree and subsample parameters fluctuate between 0.7 and 0.8,
with this moderate random sampling strategy ensuring model diversity
while avoiding excessive information loss. Finally, regarding regularization
control, the alpha and lambdaparameters remain relatively small, indicating
good model generalization capability. The optimized parameter

combinations in this study fully demonstrate the superiority of theXGBoost
algorithm in parameter tuning and provide important guarantees formodel
stability.

Regarding model evaluation metrics, the XGBoost prediction model
constructed in this study demonstrates excellent performance across all
dimensions. Regarding R², all four sub-models exceed the excellent
threshold of 0.9, with the RBmodel performing best (R² = 0.941), indicating
that it explains 94.1%of the variance in thedependent variable.TheEPBand
CBmodels show comparable predictive performance (R² = 0.913 and 0.914,
respectively), also demonstrating strong explanatory power. While the TB
model performed relativelyworse, its R² still reached a reliable level of 0.901.
Regarding error assessment, the RMSE of all models is controlled within a
low range of 0.12–0.145, indicating small deviations between predicted and
actual values. The MAPE maintains an excellent level of 1.7–3.2%, further
confirming the model’s accuracy. The evaluation indicator results demon-
strate that the constructed XGBoost model not only has strong predictive
capability but also exhibits good stability and reliability when analyzing the
complex nonlinear relationship between tourists’ spatial perception of the
agricultural heritage site and their carbon reduction behavior.

Interpretable analysis results
This study uses SHAP value analysis to conduct an in-depth exploration of
how tourists’ spatial perception of the agricultural heritage site influences
their carbon reduction behavior. The SHAP analysis not only provides
overall importance rankings of influencing factors but also reveals the local
feature value distribution of each sample (Figs. 2–5). From the analyses of
the four models, key features show some consistency across models, but
their importance and influence mechanisms exhibit significant differences.
Spatial perception features demonstrate unique distribution patterns, par-
ticularly when discussing different types of carbon reduction behaviors.

In the TB model (Fig. 2), LUCP shows the greatest influence, with its
SHAP value contribution reaching 58.267%, far exceeding the other factors.
This result is consistent with existing research showing the significant
impact of spatial patterns at agricultural heritage sites on tourists’ behavior
choices. CHVR and TACR rank second and third, with contributions of
10.378%and7.620%, respectively, forming a significant secondary influence
group.While showing relatively lower contributions of 6.379% and 4.098%,
TCID and ACLA still demonstrate statistical significance, indicating that
tourists’ low-carbon transportation choices are influenced by multi-
dimensional spatial perception features.

In the CBmodel (Fig. 3), APFI shows significantly greater importance,
with a contribution of 42.038%, approximately 25 percentage points higher
than in the othermodels. This finding stems from tourists’ greater emphasis
on perceptions of traditional agricultural system integrity in consumption
decisions. TACR and RLCP contribute 16.830% and 15.940% explanatory
power, respectively, forming a significant secondary influence group.

Table 4 | The hyperparameters of each model and a
comparison of the evaluation metrics

TB CB RB EPB

Hyperparameter max_depth 3 3 3 3

learning_rate 0.02 0.01 0.02 0.02

min_child_weight 1 3 2 4

colsample_bytree 0.7 0.8 0.7 0.7

alpha 0 0 0 0

subsample 0.8 0.8 0.8 0.8

lambda 1 1 1 0

random_state 30 30 30 30

Evaluation metrics R2 0.901 0.9137 0.941 0.913

RMSE 0.145 0.125 0.120 0.120

MAPE 0.026 0.017 0.021 0.032
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Interestingly, HCAP and CHVR achieve contributions of 5.554% and
4.760%, respectively, forming a stable tertiary influence group. This hier-
archical distribution indicates that tourists’ sustainable CB is strongly
influenced by perceiving agricultural production system integrity while also
being significantly constrained by the ability to identify traditional features
and cultural cognition.

The RB model shows similar influence mechanisms to the TB model
(Fig. 4),withLUCPsimilarly demonstratingoverwhelmingdominancewith
a contribution of 57.810%. This finding is consistent with Yang et al.’s

conclusions regarding spatial perception’s impact on tourist behavior.
Interestingly, CHVR’s contribution reaches 10.936%, significantly greater
than in the othermodels.More intriguingly, TCID,TACR, andACLAshow
relatively similar contributions (7.507%, 6.984%, and 6.709%, respectively).
This balanced distribution contrasts sharply with the other models, indi-
cating that RB is evenly influenced bymultidimensional cultural perception
factors.

The EPBmodel exhibits unique influence characteristics (Fig. 5), with
TRAC ranking first with a contribution of 42.842%, consistent with Weng

Fig. 2 | TB values and contributions.
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et al.’s findings on the impact of facility accessibility on tourists’ environ-
mental behavior. Interestingly, ISYP and WSYC contribute 16.964% and
8.969% explanatory power, respectively, reflecting the important influence
of facility perception dimensions on EPB. The importance of some factors
increases as the depth of tourists’ experience increases. For example, TCID
andACLA influence EPBmore strongly (8.658% and 7.645%, respectively),
indicating that the cultural landscape dimension has a special promotional
effect on EPB.

Comparing the SHAP value analyses of four types of carbon reduction
behavior models, this study identifies five key features with universal
influence. Firstly, LUCP’s contribution exceeds 57% in both the TB and RB
models, showing the strongest influence. Secondly, the influence of TACR
remains stable across all models, reaching a contribution of 16.830% in the
CB model. Thirdly, the influence of CHVR fluctuates across models but
remains significant. Fourthly, the influence of TCID gradually increases,
rising from 6.379% in the TB model to 8.658% in the EPB model. Fifthly,

Fig. 3 | CB values and contributions.
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while ACLA shows relatively lower contributions, it demonstrates a stable
influence across all models.

Figure 6 illustrates the influence levels of five spatial perception ele-
ments on tourists’ TB. CHVR demonstrates the most significant impact
trend, showing a gentle influence in the 1–2 score range, followed by a
notable upward trend in the 2–4 range, and stabilizing above 4 points. The
influence curve for LUCP remains generally stable, with minimal fluctua-
tions across the 1–5 score range. TACR and TCID exhibit similar impact
patterns, showing slight increases in the 3–4 score range. The influence of

ACLA is relatively weak, displaying only minor positive effects in the high
score range. These findings indicate that enhancing tourists’ recognition of
cultural heritage value is the most effective approach to promoting low-
carbon transportation choices, particularly crucial during the transition
from low to moderate recognition levels.

Among the factors influencing CB (Fig. 7), LUCP demonstrates the
greatest impact, especially after forming a distinct turning point at a score of
3, where its influence increases significantly. CHVR shows a steady upward
trend. TACR exhibits notable influence in the 2–4 score range. The impacts

Fig. 4 | RB values and contributions.
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of TCID andACLA are relatively weak. These findings suggest that tourists’
understanding and acceptance of land use patterns are crucial factors
affecting their sustainable CB. When tourists better recognize the harmony
of the landscape spatial layout, theyaremore likely tomake environmentally
friendly consumption choices.

Regarding factors influencing RB (Fig. 8), TACR shows the greatest
impact, with its curve showing a sharp upward trend in the 2–4 score range.
CHVR and TCID demonstrate secondary but stable influential effects. The
impacts of LUCPandACLAare relativelyweak.Thesefindings indicate that

tourists’ recognition and understanding of traditional agricultural char-
acteristics directly influence their willingness to participate in low-carbon
recreational activities. Enhancing tourists’ perception of traditional agri-
cultural features is an important means of promoting sustainable RB.

Concerning factors influencing EPB (Fig. 9), ACLA demonstrates the
greatest influence, showing a particularly steep upward trend in the 3–4
score range. CHVR and LUCP exhibit stable positive influences. The
impacts of TACR and TCID are relatively weak. These findings suggest that
tourists’ recognition of the esthetic value of the agricultural landscape is

Fig. 5 | EPB values and contributions.
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closely associated with their EPB. Therefore, enhancing landscape esthetics
can effectively promote tourists’ environmental awareness and behavior.

Regarding TB (Fig. 10), the LUCP × CHVR interaction plot shows
significant gradient features from the lower left to upper right, with the
diagonal distribution of color depth indicating an apparent synergistic effect
between the perception of land use coordination and recognition of cultural
heritage value. Their joint enhancement most effectively promotes tourists’
low-carbon transportation choices. The TACR × APFI interaction plot

shows a uniform gradient trend, with regularly inclined contour lines
reflecting stable interaction between the recognition of traditional agri-
cultural characteristics and APFI. The CHVR × HCAP interaction plot
shows the deepest color in the upper right, revealing that the combination of
high recognition of cultural heritage value and perception of the historical
cultural atmosphere has the strongest promoting effect on eco-friendly TB.
Overall, Fig. 10 indicates that the synergy between cultural cognition and
spatial perception plays a crucial role in promoting low-carbon TB.

Fig. 6 | PDP of TB.

Fig. 7 | PDP of CB.

Fig. 8 | PDP of RB.

Fig. 9 | PDP of EPB.
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Regarding CB (Fig. 11), the results presentmore complex interaction
patterns. The LUCP × CHVR interaction plot shows nonlinear color
change characteristics, forming significant dark clusters in the medium-
high value region, indicating that both factors must reach specific
thresholds to significantly impact sustainable CB. The TACR × APFI
interaction effects are most evident in the medium-level region, with
dense contour lines revealing that moderate combinations promote sus-
tainable CB most effectively. The CHVR × HCAP interaction plot
demonstrates the strongest positive effect in the high-value region, indi-
cating that deep cultural cognition and strong historical atmosphere
perception maximally stimulate tourists’ sustainable consumption will-
ingness. Overall, Fig. 11 shows that CB is influenced by complex inter-
actions between cultural cognition and spatial perception, requiring
multiple factors to reach optimal levels for ideal effects.

Concerning RB (Fig. 12), the LUCP × CHVR interaction exhibits
gentle gradient characteristics, with a uniform contour distribution reveal-
ing stable influencemechanisms on RB. The TACR×APFI interaction plot
shows distinct regional characteristics, forming dark clusters in the
medium-high value region, indicating that both factors must reach certain
levels to promote low-carbon RB effectively. The CHVR × HCAP interac-
tion effects are most significant in the upper right region, suggesting that
high-level combinations maximally promote sustainable recreational

activity participation. Overall, Fig. 12 reflects the dominant role of cultural
cognitive elements in promoting low-carbon RB.

For EPB (Fig. 13), all three interactions show strong positive effect
characteristics. The LUCP × CHVR interaction plot shows the most
significant diagonal dark distribution, revealing the most direct and
strong influence on EPB. The TACR × APFI interaction also shows clear
positive trends, with a regular contour distribution, indicating that their
combination continuously strengthens tourists’ environmental aware-
ness. The CHVR × HCAP interaction forms significant dark areas in the
high-value region, reflecting that deep cultural cognition and strong
historical atmosphere perception significantly promote tourists’ envir-
onmental protection behavior. Overall, Fig. 13 shows that EPB is most
significantly influenced by the positive effects of spatial perception
elements.

The PDP interaction analysis shows that the spatial perception ele-
ments’ influence mechanisms on tourists’ carbon reduction behavior differ
significantly in characteristics. TB ismainly affected by the synergy between
cultural cognition and spatial layout coordination, CB shows complex
nonlinear interaction characteristics, RB prominently reflects the dominant
role of cultural cognitive elements, and EPB presents the most significant
positive interaction effects. These findings reveal that CHVR plays a core
role in all behavior types, with its interactions with other elements generally

Fig. 10 | Three indicator interaction plots for TB.

Fig. 11 | Three indicator interaction plots for CB.

Fig. 12 | Three indicator interaction plots for RB.
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strong, highlighting the key position of cultural cognition in promoting
carbon reduction behavior formation. In addition, spatial perception ele-
ments’ interaction effects generally show distinct threshold characteristics,
indicating that multiple elements must reach specific levels to produce
significant behavioral guidance effects.

Basedon these interactionpatterns and their spatialmanifestations, the
XGBoost-SHAP model analysis revealed three key findings regarding spa-
tial perception’s influence on tourists’ carbon reduction behavior. First, the
model demonstrated robust predictive capability across all behavioral
dimensions, with R² values consistently exceeding 0.9 (ranging from 0.901
to 0.941) andMAPEmaintained at an excellent level between 1.7 and 3.2%,
indicating high reliability in capturing the nonlinear relationships between
spatial perception and carbon reduction behaviors. Second, SHAP analysis
identified two dominant spatial perception elements: land use coordination
perception (LUCP) showed the strongest influence on transportation and
RBs (with contributions of 58.267% and 57.810%, respectively), while
CHVR maintained significant cross-dimensional influence across all
behavioral models (contributions ranging from 4.760 to 10.936%). Third,
PDP analysis revealed differentiated influence patterns among different
types of carbon reduction behaviors, where immediate behaviors (trans-
portation, consumption, and recreational) showed stronger responses to
spatial layout coordination, while sustained behaviors (environmental
protection) demonstratedmore reliance on the combined effects of cultural
cognition elements. Furthermore, interaction analysis identified significant
synergistic effects among spatial perception elements, particularly between
LUCP and CHVR, where their combination at high levels generated
amplified effects on carbon reduction behaviors, exceeding the sum of their
individual influences.

Discussion
The XGBoost-SHAP model analysis identified five key spatial perception
characteristics that significantly influence tourists’ carbon reduction beha-
vior. LUCP demonstrates the greatest influence on transportation and RBs,
with SHAP value contributions reaching 58.267% and 57.810%, respec-
tively. This finding extends Lee et al.’s conclusions about spatial layout
rationality, while also aligning with Zhang et al.’s findings on how spatial
organizationpatterns affect tourist behavior choices. The strong influenceof
LUCP particularly resonates with Shen and Chou’s cultural landscape
theory emphasizing the coordinated development of production, living, and
ecological spaces in heritage sites.

As a cross-dimensional core influencing factor, CHVR maintains
significant contributions across all behavioral models (4.760–10.936%).
This universal influence not only validates Yang et al.’s findings regarding
cultural cognition in behavioral guidance but also supports Kim et al.’s
emphasis on cultural heritage recognition in sustainable tourism develop-
ment. Moreover, this aligns with Hou et al.’s research on the role of
intangible cultural heritage in shaping visitor behavior.

TACRnotably influences the CBmodel (16.830%), reflecting Su et al.’s
findings on how traditional agricultural system recognition affects tourist
consumption decisions. This result also extends Wang et al.’s research on
landscape pattern optimization in agricultural heritage sites, demonstrating

how spatial perception influences behavioral choices. The significant impact
of TACR also aligns with Zhou et al.’s findings on the importance of tra-
ditional agricultural characteristics in shaping visitor experience and
behavior.

The gradually increasing influence of TCID (from 6.379 to 8.658%)
builds on McKercher et al.’s temporal analysis of tourist behavior, while
adding new insights into how local characteristic identification develops
over time. This progressive influence pattern supports Dai and Zheng’s
research on how spatial experience accumulates to affect behavioral inten-
tions. ACLA’s stable influence across models (4–7%) supports Pai et al.’s
findings on multi-sensory spatial experience, while also complementing
Albayrak et al.’s research on how environmental perception affects tourist
behavior duration.

Thesefindings significantly extendprevious researchbyZhouet al. and
Wang et al. on spatial characteristics of agricultural heritage sites, revealing
not just the importance of individual elements but their complex interac-
tions in influencing carbon reduction behavior. The results also add a new
dimension to Zhu et al.’s sustainability framework by quantifying how
spatial perception elements contribute to environmental behavior forma-
tion. The importance ranking of the five key characteristics (LUCP, CHVR,
TACR, TCID, and ACLA) provides a more nuanced understanding than
previous studies, which often treated spatial perception as a unified
construct.

The XGBoost-SHAP model analysis reveals that immediate carbon
reduction behaviors (including transportation, consumption, and RBs)
demonstrate differentiated spatial perception influence mechanisms. The
differentiated influence mechanisms identified both support and extend
previous findings.While the results align with Lee et al.’s conclusions about
spatial environment’s influence, they further reveal how specific spatial
elements interact with cultural factors - a dimension not fully explored in
previous studies.

LUCP and CHVR play dominant roles in TB, consistent with Lee
et al.’s findings on the influence of the spatial environment on tourists’
behavior. This extends Zhang et al.’s research by demonstrating how spatial
organization specifically affects transportation choices. LUCP guides eco-
friendly transportation choices by influencing tourists’understanding of the
spatial layout, while CHVR enhances environmental responsibility through
improved recognition of cultural value, supporting Su et al.’s findings on the
role of heritage awareness in behavioral decisions.

TACR had the greatest influence on CB, supporting Su et al.’s
discussion of the impact of recognizing the traditional agricultural sys-
tem on tourists’ consumption decisions. While they focused on general
heritage value perception, the current results specify how different
spatial elements contribute to distinct behavioral outcomes. Enhanced
recognition of traditional agricultural system characteristics directly
promotes the selection tendency toward local agricultural products and
eco-friendly accommodation facilities, while ACLA strengthens iden-
tification with local products through enhanced esthetic experience.
This finding advances Wang et al.’s framework by revealing specific
pathways through which spatial perception influences consumption
patterns.

Fig. 13 | Three indicator interaction plots for EPB.
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CHVR and TCID have complementary influences on RB, validating
Yang et al.’s findings on cultural cognition’s fundamental role in guiding
behavior. This relationship was further elaborated by the PDP analysis,
which showed that characteristic interactions in immediate carbon reduc-
tion behaviors mainly manifest in LUCP ×CHVR and TACR ×TCID
combinations. These synergistic effects exceed the sum of individual char-
acteristic influences when multiple characteristics reach higher levels, a
phenomenon not previously identified in spatial perception research.

Sustained carbon reduction behavior (EPB) shows unique spatial
perception influence mechanisms. The PDP analysis indicates that ACLA
forms a steep upward curve in the 3–4 score range, echoing Weng et al.’s
results on spatial experience’s influence on environmental behavior. This
finding adds precision to previous research by identifying specific threshold
points where spatial perception begins to significantly impact behavior.
TCID’s influence manifests as a cumulative effect, with sustained
improvements in identification ability gradually enhancing environmental
behavior tendency, supplementing Dolnicar et al.’s research framework on
factors influencing environmental behavior.

The interaction analysis between ACLA and other characteristics
revealed the synergistic promotion effect of landscape esthetic experience
and cultural cognition, with the ACLA ×CHVR combination particularly
showing significant positive effects in high-score regions. This extends
beyond McKercher et al.’s findings on seasonal effects by demonstrating
how spatial perceptions interact over time to influence behavior. The
observed interaction characteristics support Cao et al.’s findings on envir-
onmental behavior formation mechanisms, indicating that high landscape
esthetic perception and cultural cognition constitute key conditions for
tourists’ sustained environmental behavior, thereby promoting long-term
EPB practice.

Our study makes three major theoretical contributions to agricultural
heritage sites and low-carbon tourism research. Firstly, overcoming the
limitations of existing studies that focused excessively on individual envir-
onmental awareness and external incentive measures, it systematically
revealed the complex influence mechanisms of traditional agricultural
system integrity, human-land relationship harmony, and cultural value
diversity on tourists’ low-carbon behavior in agricultural heritage sites as
unique cultural landscape spaces for the first time. This finding enriches the
sustainable development theory of agricultural heritage sites and provides
new perspectives on how spatial characteristics influence tourists’ envir-
onmental behavior.

Secondly, addressing the challenge that traditional research methods
struggle to effectively capture complex nonlinear relationships between
spatial perception and carbon reduction behavior, it innovatively introduces
the XGBoost-SHAP model framework. It not only quantitatively evaluates
the influenceweights of spatial perception elements but also reveals element
interactions for the first time, particularly finding that the combination of
land use coordination perception and CHVR can produce effects exceeding
the sum of individual elements’ influences, providing a new research
paradigm for agricultural heritage sites’ spatial optimization.

Thirdly, it first distinguished between immediate and sustained carbon
reduction behaviors, discovering significant differences in how spatial
perception elements influence these two types of behaviors: immediate
behaviors are mainly influenced by the perception of land use coordination
and the recognitionof cultural heritage value,while sustainedbehavior relies
more on the cumulative effects of agricultural cultural landscape esthetics
and the identification of traditional characteristics. This finding enriches
tourist behavior theory in agricultural heritage sites and provides a theo-
retical basis for differentiated low-carbon tourism management strategies.

Our study proposes the following implementation suggestions based
on thediffering characteristics of immediate and sustainedcarbon reduction
behaviors. Firstly, heritage site management departments should focus on
optimizing the following aspects to promote immediate carbon reduction
behaviors. Spatial planning system construction should strengthen land use
coordination; scientifically divide functional zones for production, living,
and ecological spaces; and construct multi-level slow travel systems. In

addition, improvements in cultural displays must systematically present
agricultural heritage values through multimedia displays and scene
restoration, innovate interpretation system design, and enhance tourists’
cultural cognition. Moreover, the shaping of local characteristics should
systematically organize and refine characteristic elements, strengthening
regional features in plant configuration and material selection.

Secondly, management measures should focus on optimizing the fol-
lowing aspects to promote sustained carbon reduction behavior. The
landscape esthetic system should be optimized to strengthen agricultural
cultural landscape esthetic value, enhancing tourists’ esthetic experience
through refined design. In addition, the environmental protection facility
configuration must optimize spatial layout, improve classified waste col-
lection systems, and reasonably establish facilities prompting energy-saving
and EPBs. Moreover, management mechanisms should be created to
establish multi-stakeholder participation systems, form regular monitoring
and evaluation mechanisms, conduct environmental protection-themed
interactive experience activities, and cultivate tourists’ environmental pro-
tection awareness.

These implementation suggestions should be integrated with existing
heritage site management systems through comprehensive policy coordi-
nation, stakeholder engagement, and strategic resource allocation. Man-
agement departments should align these measures with national heritage
protection guidelines while considering local development plans and
regional tourism strategies. Furthermore, the successful implementation of
these suggestions requires active participation from local communities,
tourismoperators, research institutions, and conservation experts. Resource
allocation should prioritize critical infrastructure development while
maintaining a balance between cultural preservation and environmental
protection measures.

Our study had several significant limitations that warrant careful
consideration. The research was confined to a single case site (Huangdu
Village), which potentially limits the generalizability of findings across
different types of agricultural heritage sites with varied geographical, cul-
tural, and socioeconomic contexts. Data collectionwas restricted toAugust-
October 2024, failing to capture potential seasonal variations in spatial
perception and carbon reduction behaviors, which could particularly affect
our understanding of how landscape changes influence tourist behavior
patterns throughout the year. Moreover, our research perspective pre-
dominantly focused on tourists’ viewpoints, overlooking the potential
influence of other stakeholders’ perceptions and actions, including local
residents, site managers, and tourism operators. The XGBoost-SHAP
model, while demonstrating strong predictive performance, still faces lim-
itations in explaining complex feature interaction effects, particularly in
cases where multiple spatial perception elements show nonlinear relation-
ships, which could affect our ability to fully understand the mechanisms
through which spatial perception influences sustained environmental
behaviors.

Based on these limitations, we propose several directions for future
research that would enhance both theoretical understanding and practical
applications. Multi-case comparative studies should be conducted across
different types of agricultural heritage sites to identify both universal pat-
terns and context-specific characteristics in spatial perception-behavior
relationships, thereby providing more nuanced guidance for site-specific
management strategies. Longitudinal studies spanning multiple seasons
should be implemented to systematically track changes in spatial perception
and carbon reduction behaviors across different temporal dimensions,
enabling more effective long-term planning for low-carbon tourism
development. Future research should also adopt a multi-stakeholder col-
laborative governance perspective to investigate spatial cognition differ-
ences among various stakeholders and their impact on carbon reduction
outcomes, with particular attention to the role of local communities in
shaping sustainable spatial characteristics. Additionally, methodological
advances should be pursued to enhance the interpretability of complex
spatial perception-behavior relationships, potentially through hybrid
modeling approaches that combine machine learning with traditional
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qualitative methods and advanced visualization techniques for better
communicating complex interaction effects to stakeholders and decision-
makers.

Through the innovative applicationof theXGBoost-SHAP framework,
this study systematically reveals the complex mechanisms through which
spatial perception influences tourists’ carbon reduction behavior in agri-
cultural heritage sites. The findings demonstrate that land use coordination
perception and CHVR serve as dominant factors in shaping environmental
behaviors, with their synergistic effects exceeding simple additive impacts.
This phenomenon can be attributed to the unique spatial-cultural char-
acteristics of agricultural heritage sites, where traditional agricultural sys-
tems, cultural landscapes, andmodern tourism functions converge to create
distinctive experiential environments. Moreover, the differentiated influ-
ence patterns between immediate and sustained carbon reduction behaviors
—with the former primarily driven by spatial layout coordination and the
latter by cultural cognition elements—reflect the evolutionary nature of
environmental behavior formation in heritage tourism contexts. These
insights suggest that future agricultural heritage site development should
adopt an integrated approach that emphasizes both spatial optimizationand
cultural value enhancement, potentially leading to more effective carbon
reduction outcomes through the cultivation of tourists’ comprehensive
spatial-cultural awareness. Such an understanding provides crucial theo-
retical guidance for developing targeted management strategies that can
simultaneously preserve heritage values and promote sustainable tourism
practices.
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