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Point clouds have become essential for digital heritage preservation, aiding in the identification and
classification of complex structural elements. However, most datasets rely on single-modal data,
limiting their ability to describe real-world scenarios comprehensively. This paper introduces theReal-
WorldMulti-modal Ancient ArchitecturePointCloudSemantic SegmentationDataset (RW-MAPCSD),
which includes multi-modal data such as point clouds, line drawings, color, and depth projections,
enabling multi-modal analysis of ancient buildings. To address data imbalance, we propose a novel
segmentation network, Mask2former-KNN 3D Network (MK3DNet). The network projects point
clouds into images while preserving point indices, using image segmentation techniques for initial
segmentation. Results are then mapped back to the point cloud and refined with the K-nearest
neighbors (KNN) algorithm. Experimental results showsignificant improvements, withmIoUandOAof
77.47% and 90.85%, respectively, surpassing the Point Transformer network by 21.94% and 5.87%.

As an integral component of Chinese cultural heritage1, many ancient
buildings have gradually deteriorated over time, with eroded surface tex-
tures and threatened structural integrity, even facing the risk of
disappearance2. The digital preservation3–6 of point cloud data has
increasingly become one of the essential methods for protecting ancient
architecture. However, significant technical challenges remain in the
semantic segmentation of point cloud data7. The disorderly and unstruc-
tured nature of point cloud data complicates processing. In semantic seg-
mentation tasks, models must identify structural details and functional
components from vast amounts of three-dimensional point data,
demanding high technical accuracy. Nevertheless, existing point cloud
segmentationmethods are insufficient for recognizing and refining complex
architectural structures8. In particular, for irregularly shaped components
and closely structured buildings, the segmentation results tend to be coarse,
making it difficult to identify and delineate various details, which fails to
meet the practical requirements for preservation and restoration.Moreover,
most current point cloud semantic segmentation models predominantly
rely on single-modal data9–11. This data often lacks a nuanced representation
of real-world scenes, leading to poor adaptability and insufficient segmen-
tation accuracy of the trained models in authentic ancient architectural
environments.

The construction andutilizationof datasets are central to the intelligent
preservation and restoration of ancient architecture. With ongoing
advancements in artificial intelligence, an increasing number of ancient

building datasets have been developed, serving diverse purposes such as
classification, segmentation, completion, and generation. These datasets
exist in various formats, including images, point clouds, and multi-view
data, addressing a wide range of requirements from building digitization to
3D reconstruction. Image datasets12, for instance, are primarily used to
document the appearance, intricate details, and localized features of
buildings. The Versailles-FP dataset, proposed by Swaileh et al. 13, contains
planar images of the Palace of Versailles along with annotated ground and
wall features, facilitating studies on architectural evolution and historical
development. Similarly, Barz et al. 14 developed a dataset comprising 9,485
church images, providing fine-grained classification labels and bounding
box annotations for 631 architectural features, enabling detailed analysis of
subtle visual differences in architectural style recognition. Multi-view
datasets15,16, by capturing information from multiple perspectives, provide
comprehensive data for 3D reconstruction. Meanwhile, point cloud
datasets17,18, generated through laser scanning and other sensors, offer high-
precision digital representations of structural and ornamental details. Zhou
et al. 19 introduced a multi-source data fusion approach to address chal-
lenges related to data insufficiency and low quality in point cloud datasets of
traditional Chinese wooden architectural elements, such as the complex
brackets used in official-style structures.

The construction of ancient building datasets is influenced not only by
building types and conservation needs but also closely related to the cov-
erage and accuracy requirements of these datasets.Western-style buildings,
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such as churches10,14 and palaces13,20, generally feature complex appearances
and structures, whereas Eastern wooden structures, particularly ancient
Chinesewooden architecture19,21, exhibit intricate craftsmanship and ornate
decoration. Furthermore, datasets for different types of buildings vary in
scale and coverage. Some datasets focus on high-precision documentation
of individual buildings22,23, while others encompass multiple structures
within a specific region or city24,25, thereby facilitating cultural heritage
conservation efforts on a broader scale. Certain large datasets26,27 even
extend their coverage to the national level, offeringmore extensive resources
for preservation and restoration.

Although existing datasets of ancient buildings have played a sig-
nificant role in the digital protection of cultural heritage, there are still
challenges, such as a limited number of datasets and insufficient model
training. Computer-generated synthetic datasets28,29, such as Building3D30,
although they have certain application value when field scanning cannot be
performed, the high precision and authenticity of field scanning datasets
remain optimal for accurately representing the current condition of build-
ings. Furthermore,many existing datasets concentrate on a singlemodality,
lacking multi-modal data fusion, which hampers the comprehensive
representation of the complex structural characteristics of buildings, parti-
cularly in the digital protection of ancient Chinese timber structures.

With the continuous advancements in technology, the evolution from
traditional geometric analysis to machine learning, and eventually to deep
learning applications, has progressively driven the intelligent and efficient
preservation of ancient architecture through artificial intelligence. Tradi-
tional methods primarily rely on geometric modeling techniques, utilizing
predefined mathematical models and statistical analyses to reconstruct and
segment the shapes, structures, and details of ancient buildings31–33. These
approaches often employ basic geometric decomposition strategies, such as
slicing34, to stably generate three-dimensional models35 or identify archi-
tectural features36. However, their efficiency and adaptability are limited
when dealing with large-scale or complex structures. Moreover, the lack of
semantic analysis capabilities hinders their application in higher-level
building information modeling.

The introduction of machine learning marked a paradigm shift in the
preservation of ancient architecture, transitioning from rule-based to data-
driven approaches. These methods leverage techniques such as feature
selection37,38 and clustering algorithms39,40 to achieve structured data pro-
cessing, therebyminimizing the need formanual intervention. The primary
strengths of machine learning lie in its high degree of automation and
adaptive learning capabilities, enabling it to address diverse application
scenarios. However, its performance heavily depends on data quality and
the availability of annotated labels, leading to limitations in scenarios with
scarce labeled data.

The rapid advancement of deep learning has ushered ancient archi-
tecture preservation into a new era ofmultidimensional data processing and
complex scenario analysis. Techniques such as convolutional neural net-
works (CNNs)41 and graph neural networks (GNNs)42 enable the extraction
of rich geometric and semantic features from data sources like images and
point clouds, effectively overcoming the limitations of traditional methods
andmachine learning. For instance, Xiong et al. 43 proposed a novelmethod
based on deep transfer learning by integrating ResNet50 and YOLO v2
networks, which was successfully applied to the detection of HakkaWalled
Houses (HWHs). Zhou et al. 44 introduced theMixPoolingDynamicGraph
Convolutional Neural Network (MP-DGCNN), which redefined edge fea-
tures and incorporated an internal feature adjustmentmechanismalongside
a learnable mix pooling operation, enabling efficient learning of local graph
features in point cloud topologies. Deep learning methods have demon-
strated exceptional performance in tasks such as semantic segmentation,
structural recognition, and defect repair by leveraging encoder-decoder
architectures30,45 and multi-scale feature aggregation46. Additionally, the
incorporation of attention mechanisms like Transformers47,48 has further
enhanced the understanding of semantic relationships among complex
architectural components. Compared to traditional methods and machine
learning, deep learning significantly improves both accuracy and

generalization capabilities, reduces dependency on predefined rules and
manual intervention, and provides efficient solutions for large-scale ancient
architectural data processing.

As the demands for preserving ancient architecture continue to evolve,
single-sourcedata processingmethods have become inadequate formeeting
the requirements of increasingly complex tasks. Li et al.49 addressed the
limitations of diffusionmodels in depicting ancient Chinese architecture by
introducing a multimodal dataset. This dataset encompasses architectural
styles from theTang toYuandynasties, providingdiverse data forms such as
images, text, and videos, while pioneering the use of pinyin annotations for
unique terminology, therebyfilling a significant gap in thefield.Duan et al. 50

proposed an innovative Multimodal Multi-task Restoration Model
(MMRM) that integrates contextual and residual visual information,
effectively restoring ancient ideographic scripts. The diversity, complexity,
and large-scale nature of architectural data present challenges that single-
modality approaches fail to address comprehensively. Consequently, inte-
gratingmultimodal data for holistic analysis and processing has emerged as
a pivotal direction in the research of ancient architectural preservation.

Establishing a high-precision, multimodal point cloud segmentation
dataset based on real-world scenarios offers a viable solution to these issues.
The main contributions of this paper are outlined in the following sections:
(1) Amulti-modalpoint cloudsegmentationdataset forancientbuildings in

real-world scenarios, named RW-MAPCD, has been constructed. This
dataset integrates rich multimodal data sources, such as point clouds,
line drawings, color projections, anddepth projections. Point clouddata
provides fine spatial geometric information, line drawings illustrate the
detailed features of the building structure, while color projections and
depth projections supplement the color and depth information of the
objects. This multi-level and multi-perspective data combination
provides comprehensive contextual information for the model,
enhancing its ability to understand and analyze the complex structures
of ancient buildings. Figure 1provides an overviewof theRW-MAPCD.

(2) A cross-modal point cloud semantic segmentation network,
MK3DNet, is proposed. Addressing the significant imbalance of
different types of sample data in the ancient building dataset, the
recognition and segmentation ability of complex structures is
enhanced by combining 3D point cloud data with 2D image
segmentation techniques.

(3) In theRW-MAPCDsegmentation task, the performance ofMK3DNet
significantly surpasses traditional point cloud segmentation methods,
showing marked improvements across multiple metrics. Notably, the
results are particularly pronounced for components with irregular
shapes and complex hierarchies.

The organization of this paper is structured as follows: the first section
presents the background and current status of the digital preservation of
ancient architecture, along with an analysis of the significance and chal-
lenges associated with point cloud segmentation in this domain; the second
section reviews the related work on ancient building datasets and the
applications of preservation efforts; the third section provides a detailed
description of the construction process of RW-MAPCD, the network
architecture of MK3DNet, and the evaluation metrics for image and point
cloud segmentation tasks; the fourth section presents the experimental
results and analysis;finally, the contributions of this paper are discussed and
summarized, along with an overview of potential future research directions.

Methods
Data acquisition and preprocessing
The ancient buildings in RW-MAPCD are all located in Longyan City,
Fujian Province, and cover multiple historical periods. This includes the
Chaojing Public Ancestral Hall (PAH), Liang PAH, and Rongnan PAH
prior to the Qing Dynasty, the Zhongxian Mansion (Ma) during the Qing
Dynasty, and the ChenAncestral Shrine (AS) during the Republic of China.
Amulti-source data fusion approach21 was employed to acquire and process
high-precision 3D point cloud data of the historical architecture, providing
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significant support for digital preservation and analysis. The data acquisi-
tion process is illustrated in Fig. 2.

Firstly, an unmanned aerial vehicle (UAV) is used to acquire oblique
imagery, capturing the external information of the structure, which is then
processed through software to generate a high-resolution oblique point
cloud model. In this process, the image resolution captured by the UAV is
1.5 cm, and the point cloud density is approximately 30 thousand points per
square meter. Concurrently, a laser scanner is used to perform a compre-
hensive indoor and outdoor scan of the building structure, and the data is
stitched together to obtain indoor and outdoor laser point cloud models.
The laser scan has a point clouddensity of 1million points per squaremeter.
Finally, the fusion and registration of oblique point clouds and laser point
clouds are performed to generate a complete indoor and outdoor colored
point cloud model of the historical architecture.

The preprocessing of the point cloud data from the historical archi-
tecture is a critical step in its digital representation, encompassing several
important steps such as region clipping, point cloud filtering, point cloud
down-sampling, data normalization, and coordinate system unification.
Region clipping is performed to remove irrelevant portions, thereby redu-
cing redundant data and ensuring the preservation of architectural details;
point cloud filtering is used to remove noise and unnecessary points,
reducing errors in the processed data. This process helps to improve the
quality of the point cloud data, thereby enhancing the accuracy and com-
putational efficiency of the model; uniform down-sampling is applied to
decrease computational load and enhance recognition capability; centroid
translationnormalization is used tounify the scale, eliminatingdiscrepancies
between data sources; coordinate system unification is achieved through
covariance matrix analysis to ensure consistency in subsequent processing.

Raw Point Clouds Semantic Label Instance LabelName and Century Line Drawing
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(before 1644)
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Fig. 1 | Overview of the RW-MAPCD.

Fig. 2 | Data preprocessing process.
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Data annotation
In this paper, five representative point cloud datasets of Chinese ancient
buildings, including ancestral halls, temples, and ancestral homes, are
manually labeled to reflect distinct architectural styles and structural fea-
tures. These datasets provide diverse research samples for the comprehen-
sive analysis and classification of typical elements in ancient buildings.
Furthermore, architectural line drawings were generated based on the fused
point cloud data, as illustrated on the right side of Fig. 1. These drawings
offer precise and intuitive data support for the structural analysis of ancient
buildings. They not only preserve the geometric features and detailed
information of the buildings but also effectively visualize their core com-
ponents and overall layout.

During the annotation process, the architectural elements were cate-
gorized into 17 distinct classes based on their structural functions and visual
characteristics. Noise was assigned to the Other (or) category, which
improved the robustness of the noise-trained network. The primary cate-
gories include Beam (bm), Censer (cn), Door (dr), Doorframe (df), Floor
(fl), Lantern (lt), Other (or), Pillar (pl), Plaque (pq), Roof (rf), Step (sp),
Stone Lion (sn), Stool (sl), Table (tb), Tributary (tr),Wall (wl), andWindow
(wd), as summarized in Fig. 3. The annotations for each category strictly
adhere to relevant architectural standards51,52, ensuring scientific rigor,
standardization, and accuracy.

To qualitatively describe the morphological coverage of the data, we
conducted adetailed analysis of the collectedpoint clouddata. Eachcategory
of architectural elements is represented infinedetail through thepoint cloud
data, which accurately reflects the structural details of the buildings and
closely aligns with the segmentation results of the target elements. For
instance, the roof is represented with high-density point cloud data that
captures its curved shape and layers, while the pillars, due to their vertical
structure, exhibit higher density and clarity in the point cloud data. These
data not only faithfully restore the morphological features of ancient
buildings but also ensure that the subsequent segmentation algorithms can
effectively identify and process the boundaries and details of each element.

Construction of RW-MAPCD
The indoor and outdoor point cloud model of a single complete ancient
building contains a large volume of data, which is unsuitable for deep

learning model processing. Based on the high-precision point cloud data
obtained and its detailed annotation information, the entire ancient building
is segmented into regions and further decomposed into several scenes with
specific semantics. Point cloud data for each scene is rotated and translated
to generate projection images from24different perspectives, including color
and depth projection images, along with semantic and instance labels. RW-
MAPCDencompassesfive ancient buildings, categorized into 17 classes and
52 scenes, comprising 627.24 million point clouds, 1248 color projection
images, 1248 depth maps, and 20 line drawings. Figure 4 illustrates the
construction process of the multimodal ancient building point cloud seg-
mentation dataset.

Definingsurroundingboxes. The columnserves as the vertical support for
the building, usually located at the four corners of the room or at critical
internal positions. The space formed between the columns typically defines
the fundamental boundary of the room. Beams are horizontal structural
members that connect columns to create the ceiling structure of the room.
The arrangement of beamsplays a crucial role indetermining the dimensions
and configuration of the room. In ancient architecture, columns are usually
arranged according to specific rules and proportions to create a “column
grid”. The layout of the column grid determines how the rooms are divided.
Each “grid” or “block” generally corresponds to a distinct room or area. The
space between columns can be further subdivided bywalls, screens,windows,
among others, forming independent rooms or areas. A longitudinally-
oriented room is formed between the front and rear columns, while a
transversely-oriented room is formed between the left and right columns.
This paper employs the clipping boxmode of Trimble RealWorks, a software
for point cloud processing, to generate a point cloud bounding box, as shown
in the bounding box depicted in the center of Fig. 4. There are some repeated
areas between the adjacent boundaries of each bounding box, to facilitate the
acquisition of a complete point cloud scene.

Scene partitioning strategy. Based on the characteristics of the beam-
column structure, ancient buildings can be categorized into various
scenes, such as gate, foyer, corridor, lobby, room, and courtyard. These
scenes not only represent the functional aspects of ancient architecture
but also reflect the logic and aesthetic principles underlying its spatial

(a)Beam

(e)Floor

(i)Roof

(m)Table

(b)Censer

(f)Lantern

(j)Step

(n)Tributary

(c)Door

(g)Pillars

(k)StoneLion

(o)Wall

(d)Doorframe

(h)Plaque

(l)Stool

(p)Window

Fig. 3 | Ancient building point cloud category.
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organization. The scene classification of ancient buildings in RW-
MAPCD is illustrated in Fig. 5. Specifically, 1 denotes the gate, 2 the foyer,
3 the corridor, 4 the courtyard, 5 the room, and 6 the lobby.

The gate, often situated at the building’s entrance, serves as a symbolic
architectural feature that embodies authority and sanctity. Comprising
elements such as gate towers, pillars, and eaves, it requires detailed identi-
fication of its structural hierarchy and intricate details during digital seg-
mentation and reconstruction. The foyer, a fundamental component of
interior spaces, typically functions as the central area for activities in
households, ancestral halls, or temples. Its beam-and-pillar framework is
characterized by a symmetrical layout and notable spatial depth, which can
be accurately reconstructed through the extraction and analysis of pillar and
beam features. Corridors, functioning as connecting passages between dif-
ferent areas, are readily identifiable in point cloud segmentation due to their
elongated, linear structure. The lobby, designed for significant ceremonies,
showcases a grand architectural style with intricate multi-layered roofing
and decorative carvings that necessitate focused attention during segmen-
tation and reconstruction. Rooms, the most prevalent spaces for living or
storage in ancient architecture, are distinguishable in point cloud segmen-
tation by their enclosed walls and regular geometric configurations. The
courtyard, serving as an open spacewithin the building, acts as a central hub
connecting various rooms and spaces. Its digital reconstruction emphasizes

accurately mapping the spatial relationships between the courtyard and its
surrounding structures. As depicted in Fig. 4, the architecture is divided into
10 labeled scenes (①-⑩), including one gate, three foyers, two corridors, one
courtyard, two rooms, and one lobby.

The detailed data distribution of point clouds following the division of
scenes is presented in Table 1. It illustrates the intricate details and spatial
arrangements across the different scenes.

Coordinate transformation. The point cloud data P consists of the
spatial coordinates and various attributes of each point, and can be
represented by Eq. (1).

P ¼ fðxi; yi; zi; ri; gi; bi; si; ii; idxiÞji ¼ 1; 2; . . . ;Ng ð1Þ

Here, ðxi; yi; ziÞ represents the three-dimensional coordinates, ðri; gi; biÞ
denotes the color information, si is the corresponding semantic label, ii
represents the instance label, and idxi refers to the point position index.

In order to capture the details of the point cloud more comprehen-
sively, this method generates 24 different perspective projection images by
rotating and translating the point cloud around the X, Y , and Z axes. The
rotation operation in three-dimensional space is implemented using Euler
angles and rotation matrices.

Raw Point Clouds Semantic Label Instance Label

Beam-Column Structure

Line Drawing

RGB Projection Depth Projection Semantic Label Instance Label

Point Cloud

Projection Image

Bounding Box Scene Point Clouds

Fig. 4 | Construction process of RW-MAPCD.
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Given theEuler anglesθx; θy andθz, the corresponding rotationmatrix
R can be expressed as Eq. (2).

R ¼ RxðθxÞ � RyðθyÞ � RzðθzÞ ð2Þ

For thepoint v ¼ xi; yi; zi
� �

, transforming thepoint cloud from3Dspace to
the target perspective v0 ¼ ðx0i; y0i; z0iÞ can be expressed as Eq. (3).

v0 ¼ R � v � T ð3Þ

This transformation enables the point cloud to exhibit different geo-
metric features across different views, which is crucial for extracting com-
prehensive information regarding the point cloud.

Multi-view projections. The projection module adopts an algorithm
based on perspective projection and pixel selection53. The resolution of
the projected image is set to 512 × 512, i.e.,H =W = 512. The depth offset
parameter b is set to 0.3, and the number of depth layers D is set to 112.
The rotated point cloud is projected onto a three-dimensional grid, where

Rongnan PAH Liang PAH Zhongxian Ma

Chaojing PAH Chen AS

Fig. 5 | Point cloud scene delineation based on beam-column structure.

Table 1 | Detailed point cloud data distribution of ancient buildings after dividing the scene

Data source Chaojing PAH Chen AS Rongnan PAH Liang PAH Zhongxian Ma

Number 13 scenes 13 scenes 10 scenes 9 scenes 7 scenes

Name Points (million) Percent Points (million) Percent Points (million) Percent Points (million) Percent Points (million) Percent

Beam 7.94 7.67% 9.02 10.04% 21.50 8.65% 13.25 10.02% 4.53 8.52%

Censer 0.02 0.02% 0.01 0.01% 0.19 0.08% 0.10 0.08% 0.16 0.31%

Door 0.99 0.96% 2.42 2.70% 8.45 3.40% 2.74 2.07% 0 0%

Doorframe 1.63 1.57% 2.82 3.13% 7.82 3.14% 4.63 3.50% 0 0%

Floor 20.33 19.65% 16.78 18.67% 47.32 19.04% 19.63 14.84% 10.65 20.06%

Lantern 0.57 0.55% 0 0% 0.05 0.02% 0.09 0.07% 0.27 0.51%

Other 7.92 7.66% 5.58 6.20% 8.45 3.40% 3.56 2.69% 1.55 2.91%

Pillars 5.71 5.52% 4.98 5.55% 10.53 4.24% 7.33 5.54% 1.89 3.57%

Plaque 0.26 0.25% 0.72 0.81% 0.41 0.17% 1.08 0.81% 1.24 2.34%

Roof 17.41 16.82% 21.42 23.83% 60.88 24.50% 32.900 24.88% 15.10 28.44%

Step 0.55 0.54% 0.11 0.13% 1.68 0.67% 0 0% 0.09 0.17%

StoneLion 0.10 0.09% 0 0% 0 0% 0 0% 0 0%

Stool 0.34 0.33% 0 0% 0.17 0.07% 0 0% 0.14 0.26%

Table 0.83 0.80% 1.33 1.47% 0.46 0.18% 1.59 1.21% 2.03 3.82%

Tributary 0.30 0.29% 0.50 0.55% 0.27 0.11% 0.45 0.34% 0.70 1.31%

Wall 37.61 36.34% 24.19 26.91% 80.34 32.33% 44.45 33.61% 14.76 27.79%

Window 0.97 0.94% 0 0% 0 0% 0.45 0.34% 0 0%

Total 103.48 100% 89.88 100% 248.52 100% 132.25 100% 53.11 100%

All points(million) 627.24
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the grid coordinates are computed using Eq. (4) and Eq. (5), and the
depth dimension index is determined using Eq. (6).

ui ¼
ðx0i þ 1Þ

2
�H

� �
ð4Þ

vi ¼
ðy0i þ 1Þ

2
�W

� �
ð5Þ

di ¼
ðz0i þ 1Þ=2þ b

1þ b
� ðD� 2Þ

� �
ð6Þ

Here, de denotes the ceiling operation applied to round values upward.
For each pixel in a grid cell, the maximum depth value is selected,

representing the surface closest to the observer, thereby generating a depth
map, as expressed in Eq. (7).

Idepth xi; yi
� � ¼ max

di2grid
di ð7Þ

To generate the color map, the index values from the depth map are
used to retrieve the corresponding color information from the three-
dimensional RGB grid, following the process defined in Eq. (8).

Irgb xi; yi
� � ¼ RGB xi; yi; Idepth xi; yi

� �� �
ð8Þ

Similarly, the semantic and instance information is extracted from
semantic and instance grids using the index values provided by the depth
map. The semantic map identifies the semantic category for each pixel,
whereas the instance map indicates the object instance to which each pixel
belongs.

Figure 6 provides an example of the multi-view projected images and
the corresponding label data derived from the point cloud.

Storage point index. By executing the aforementioned calculations, we
can store the corresponding point cloud indices for each pixel of the
projected image within an index matrix. This matrix documents the
relationship between the positions of each pixel in the projected image
and the corresponding points in the point cloud. This approach ensures
that an accuratemapping relationship is established between the pixels in
each projected image and the specific points within the point clouds,
thereby providing necessary indexing information for subsequent tasks
such as semantic segmentation and label mapping.

MK3DNet
MK3DNet, the Cross-modal Point Cloud Semantic Segmentation Net-
work, enhances the accuracy and efficiency of point cloud segmentation
by integrating multi-view projection, point cloud indexing, image seg-
mentation, remapping, and KNN54 interpolation. Traditional point cloud
segmentationmodels process three-dimensional (3D) data directly, which
involves significant computational overhead and presents challenges
when handling sparse data. In contrast, image segmentation models
demonstrate superior performance in managing intricate details and
complex scenes. To address the limitations of point cloud segmentation,
this paper proposes projecting the point cloud into multi-view two-
dimensional images while recording the correspondence between each
projected image pixel and the point cloud data. By employing image
segmentation techniques to generate segmentation results, these results
are subsequently mapped back to the 3D point cloud according to the
point indices, yielding sparse initial segmentation outcomes. Finally, the
KNN algorithm is utilized to interpolate and complete the sparse seg-
mentation results, resulting in comprehensive point cloud segmentation

(b)Depth (c)Semantic (d)Instance (a)RGB

Fig. 6 | Data and labeling of multi-view projected images.
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outcomes. This method significantly improves the accuracy and com-
pleteness of point cloud segmentation.

Figure 7 illustrates the MK3DNet network structure.

Image segmentation. In the projection image segmentation section, the
Mask2Former55 network is employed. Its masked attention mechanism
dynamically focuses on the target regions within the image while dis-
regarding irrelevant backgrounds, thereby enhancing both segmentation
accuracy and efficiency. Furthermore, the Transformer decoder, by
integrating query features, is capable of capturing the global relationships
among targets, adapting effectively to complex scenes and irregularly-
shaped targets. This makes it particularly well-suited for handling multi-
scale and overlapping targets that may arise in projected images. The
Masked Attention module is represented by Eq. (9):

Xl ¼ softmax Ml�1 þ QlK
T
l

� �
Vl þ Xl�1 ð9Þ

Here, l refers to the index of the current layer.Xl 2 RN ×C represents theN
query features, each with C dimensions, in the l-th layer. Meanwhile,
Ql ¼ f QðXl�1Þ 2 RN ×C . Kl;Vl 2 RHl ×Wl ×C denote the transformed
image features obtained using f K ð�Þ and f V ð�Þ, where Hl andWl represent
the spatial resolution of the image features. The value at position ðx; yÞ in
Ml�1 is computed according to Eq. (10).

Ml�1 x; y
� � ¼ 0 ifMl�1 x; y

� � ¼ 1

�1 otherwise

(
ð10Þ

In this context,Ml�1 2 f0; 1gN ×HlWl represents the binarized output of the
mask prediction, which has been resized by the preceding Transformer
decoder layer.

The middle section of Fig. 7 illustrates the process of the Mask2-
Former network in processing projection image data. The input image has
dimensions of 512 × 512 × 3, and multi-scale features are extracted using
the SwinTransformer. The feature dimensions are 16× 16× 768, 32× 32×
384, 64 × 64 × 192, and 128 × 128 × 96, respectively. These features are
then forwarded to the Pixel Decoder, where the spatial dimensions of the
output feature map remain unchanged, while the number of channels is
uniformly transformed to 256. Subsequently, these processed features are
fed into the Transformer Decoder for semantic refinement, which ulti-
mately outputs the mask and category predictions for the semantic
segmentation task.

Remapping. After image segmentation, each pixel is assigned a pre-
diction result Îsem. Utilizing the point index mapping matrix M, the
segmentation results from the image are remapped back to the 3D point
cloud data. For each mapping point i, its semantic label within the point
cloud is determined by Eq. (11), thus generating a sparse initial point
cloud segmentation result, where only the point clouds corresponding to
the image pixels are assigned semantic labels.

P̂
sparse
sem ½MðiÞ� ¼ Îsem ð11Þ

Sparse completion. Due to the occlusion problem during the projection
process, the segmentation results obtained through direct mapping are
often sparse. To achieve complete segmentation results, this method
incorporates the KNN algorithm, which is employed to interpolate and
complete the sparse segmentation outcomes. For each unlabeled point i,
interpolation is performed using the labels of its K nearest neighbors,
where the average label of these neighbors is assigned as the semantic
label for the current point. The formula is given by Eq. (12).

P̂
complete
sem ið Þ ¼ 1

NðiÞ
�� �� X

jϵNðiÞ
P̂
sparse
sem ðjÞ ð12Þ

Here,NðiÞ represents the set ofK nearest neighborpoints of point i, P̂
sparse
sem ðjÞ

represents the semantic label of a neighboring point j, and NðiÞ
�� �� specifies

thenumberof neighboringpoints, equal toK . By addressing label loss due to
occlusion, this approach enhances the accuracy and ensures spatial con-
sistency in point cloud segmentation results.

Evaluation metrics
To compare the performance of different models, this paper evaluates
intersection over union (IoU) andmean intersection over union (mIoU) for
both projection image segmentation and point cloud segmentation. IoU,
defined as the ratio of the intersection to the union between predicted and
ground truth segmentations, quantifies the degree of overlap. The specific
formula is shown in Eq. (13).

IoU ¼ TP
TPþ FPþ FN

ð13Þ

mIoU, themean IoU across all categories, serves as ametric for overall
segmentation accuracy. The specific formula is shown in Eq. (14).

mIoU ¼ 1
N

XN
i¼1

IoUi ð14Þ

In addition, this paper calculates the average category accuracy (aAcc)
of image segmentation and the overall accuracy (OA) of point cloud seg-
mentation. The aAcc reflects themodel’s segmentation performance across
different categories by averaging the accuracy of each category. The specific
formula is shown in Eq. (15).

aAcc ¼ 1
n

Xn
i¼1

TPi

TPi þ FNi
ð15Þ

OA, reflecting the model’s overall performance, is calculated as the
ratio of correctly predicted samples to the total number of samples. The
specific formula is shown in Eq. (16).

OA ¼ TP þ TN
TPþ TNþ FPþ FN

ð16Þ

Here, true positives (TP) and true negatives (TN) indicate the number of
correctly classified positive and negative samples, respectively. False posi-
tives (FP) and false negatives (FN) represent the misclassified samples. N
denotes the total number of categories to be classified.

Results
Experimental setup
The training and testing were conducted on a server equipped with a
GeForce RTX 4070 SUPER, running on Ubuntu Linux 22.04.4 LTS. The
code was developed in Python using the PyTorch framework and operates
within an Anaconda virtual environment. This environment utilizes
PyTorch 2.0.1, CUDA 11.7, and Python 3.8.17. A variety of data augmen-
tation and training strategies were implemented to enhance the model’s
generalization ability and robustness. Specifically, the data augmentation
strategies include random rotation, flipping, scaling, and translation to
increase data diversity. Additionally, color adjustment, the addition of
Gaussian noise, and random cropping were performed to improve the
model’s adaptability and robustness. Furthermore, training strategies such
as learning rate scheduling, early stopping, batch normalization, and reg-
ularization were employed to enhance training stability and efficiency.
Through these meticulous adjustments and optimizations, the aim is to
achieve higher accuracy and better performance in complex tasks.

Dataset partitioning
The dataset was partitioned using a domain-specific strategy to ensure
comprehensive training across diverse samples and robust generalization
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across varying environments. Representative ancient architectural datasets,
including Chaojing PAH, Chen AS, Rongnan PAH, and Zhongxian Ma,
were allocated to the training set, while Liang PAHwas reserved for the test
set. The training set spans 17 categories, whereas the test set contains 14,
excluding the categories step, stoneLion, and stool.

This partitioning serves two primary purposes. First, incorporating
diverse samples in the training set enhances the model’s ability to capture
generalizable features across ancient architectural structures. Second, the
test set, featuring Liang Public Ancestral Hall with its distinct architectural
style and intricate details, provides a rigorous benchmark to evaluate the
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model’s robustness and precision in identifying specific architectural
characteristics.

Results
In the projection image dataset of RW-MAPCD, several advanced image
semantic segmentation algorithms have been employed for evaluation,
including DeepLabV3, CCNet, FCN, DeepLabV3+ , GCNet, SegFormer,
and Mask2Former. Table 2 presents the semantic segmentation results of
different models.

The results demonstrated that Mask2Former exhibited the highest
performance, achieving a mIoU of 74.31% and an aAcc of 91.30%. The
model outperformed all other algorithms across all categories. This finding
indicates that Mask2Former exhibits exceptional capability in handling
diverse scenes and complex structures. In contrast, other models displayed
comparatively weaker performance in certain categories.

Specifically, the IoU for DeepLabV3, CCNet, FCN, and DeepLabV3+
in the censer and plaque categories was nearly zero, highlighting the lim-
itations of these models in addressing these specific classes. The superior
performance of Mask2Former further underscores its adaptability and
robustness in complex scenarios. Some of the network segmentation results
are visualized in Fig. 8.

Point cloud segmentation represents a fundamental objective of this
paper, aiming to achieve precise semantic segmentation of various archi-
tectural elements within 3D point cloud data. In the context of digital
preservation of ancient structures, traditional point cloud segmentation
models often encounter challenges such as segmentation inaccuracies and

excessive computational costs when addressing large-scale and intricately
shaped buildings. To assess the performance of contemporary point cloud
segmentation models, this paper evaluates several classical segmentation
models, which were trained and tested on the point cloud dataset in RW-
MAPCD. Comparative experiments were conducted to analyze the per-
formance of each model in segmenting different architectural features. The
results of the semantic segmentation of the point cloud are presented in
Table 3.

Among all models, MK3DNet (Ours) achieved the highest mIoU and
OA, reaching 77.47% and 90.85%, respectively, and significantly out-
performed other point cloud segmentationmethods. Notably, in categories
suchasplaque andwindow, the IoUvalues formostmodels are close to zero.
This indicates that MK3DNet demonstrates significant advantages in
addressing these difficult-to-segment categories and effectively addresses
the prevalent low IoU issue in existing methods. Although its performance
in the floor, roof, and table categories is not as high as that of other models,
with values of only 87.61%, 85.42%, and 90.00%, respectively, MK3DNet
remains far ahead in most categories, compensating for its relative weak-
nesses in a few categories. Figure 9 presents the visualization results of
projected image segmentation for some models.

Analysis
In the point cloud segmentation task of ancient building components,
MK3DNet demonstrates excellent performance and significant advantages.
From Fig. 10, it can be observed that the model performs well across mul-
tiple categories, exhibiting robust generalization capabilities and effectively

Table 2 | Detailed semantic segmentation results for projected image datasets

Methods mIou (%) aAcc (%) Per Class IoU(%)

bm cn dr df fl lt or pl pq rf tb tr wl wd

DeepLabV356 22.18 69.63 24.0 0 19.34 12.83 63.24 16.65 2.91 37.35 0 62.6 9.21 3.45 57.43 1.45

CCNet57 22.94 70.02 25.91 0 25.55 9.02 62.98 19.45 1.71 36.47 0 63.77 9.46 6.51 59.48 0.86

FCN58 23.63 71.6 26.01 1.23 24.34 13.35 65.86 18.69 2.61 38.76 0 64.64 9.6 4.23 60.67 0.78

DeepLabV3+ 59 24.91 72.17 28.51 0 24.97 16.38 69.63 17.72 3.56 39.1 0 65.73 11.74 0.71 61.43 9.32

GCNet60 69.89 90.55 65.08 72.44 75.74 77.94 89.7 62.57 41.07 72.8 55.18 84.19 55.83 70.4 87.81 67.67

SegFormer61 70.88 90.71 65.51 71.71 75.30 77.44 89.67 64.45 40.46 73.46 63.83 84.60 57.48 71.40 88.1 68.9

Mask2Former55 74.31 91.30 68.59 79.80 79.44 81.59 90.10 68.86 45.84 76.63 69.54 85.11 61.91 73.63 88.73 70.60

Fig. 8 | Projected image segmentation results.
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handling the variations in complex shapes, textures, and spatial structures.
Notably, in the categories of beam, floor, roof, and wall, the model’s per-
formance is exceptionally remarkable, with the number of correctly classi-
fied points being 1346448, 2301264, 3497049, and 5792430, respectively.
Moreover, for the censer and lantern categories with few samples, although
the overall number of correctly classified points is relatively low, the model
can still sustain a reasonable classification performance in the context of
limited data, demonstrating its adaptability in few-shot scenarios.

According to the confusion matrix, precision, recall, and F1 score for
each category can be calculated, as illustrated in Table 4. The table shows
that the model exhibits high precision and recall across most categories,
indicating its ability to accurately predict the target categories while effec-
tively covering the actual target points. The precision of the floor category
reaches 0.98, with a recall of 0.89, demonstrating both high classification
accuracy and recall in segmentation tasks. In contrast, the roof category
achieves a recall of 0.88 and a precision of 0.96, reflecting the model’s
outstanding performance on this key component and its suitability for
handling complex large-scale building data.

However, the performance of certain categories in the classification
model is relatively low. For example, the precision of the ‘other’ category is
0.59, the recall is 0.64, and the F1 score is only 0.61. Thismaybe attributed to
the scattered distribution of samples within this category and the high
diversity of features, leading to confusion when distinguishing the ‘other’
category from the other categories. Furthermore, although the recall of the
plaque category is as high as 0.98, its precision is relatively low, at only 0.68,

indicating a notable degree of misclassification within this category, which
necessitates further optimization.

Overall, the model demonstrates excellent performance in the seg-
mentation tasks of primary categories such as beam, floor, roof, and wall,
with F1 scores exceeding 0.86. Notably, the F1 score for the wall category
reaches 0.94, highlighting the model’s efficiency and reliability for key
components.

Figure 11 illustrates the IoU performance of different models across
various categories. Overall, our model demonstrates outstanding perfor-
mance in several categories, with IoU values exceeding 60%, and the curve
reflects relatively smooth trends, indicating its stable performance in these
categories. In contrast, the IoU values of other models in certain categories,
such as censer, other, plaque, and window, are notably low, with some
reaching as low as 0%, indicating significant recognition difficulties and
instability for thesemodels in these categories. AlthoughPoint Transformer
performs well in some categories, such as floor, roof, and table, it exhibits
poor performance in censer, door, doorframe, and plaque categories, failing
to achieve stable IoU above 60%.

Discussion
The existing ancient building datasets and network models are primarily
based on single-modal features43,44, which usually focus on the separate
processing of 3D point clouds and 2D images18,19. This paper explores the
application potential of multimodal data and advanced segmentation
models in improving the semantic segmentation accuracy of ancient

Table 3 | Detailed semantic segmentation results for ancient architecture point cloud dataset

Methods mIou (%) OA (%) Per Class IoU(%)

bm cn dr df fl lt or pl pq rf tb tr wl wd

RandLA-Net62 38.65 76.08 50.17 0.86 11.89 14.55 94.22 25.19 6.76 30.47 0.00 82.81 82.32 74.47 67.34 0.00

PointNet++63 44.11 83.60 69.81 0.12 13.74 10.91 96.02 66.82 8.16 55.33 0.00 90.53 98.36 31.31 76.18 0.31

DGCNN64 45.13 84.60 59.63 0.08 29.74 11.31 95.81 22.01 7.78 58.21 0.00 87.78 99.43 75.14 84.70 0.15

PVCNN65 52.22 82.79 59.84 54.35 32.64 32.20 96.51 69.39 7.95 48.17 0.00 87.27 98.16 63.85 80.74 0.00

PAConv66 55.30 87.86 73.35 7.35 48.32 37.35 96.75 70.61 9.89 62.02 0.01 94.25 99.59 77.51 83.55 13.66

Point Transformer67 55.53 84.98 60.09 57.72 42.44 49.34 92.14 8.67 16.00 54.55 0.00 86.49 91.28 74.04 82.21 62.42

MK3DNet 77.47 90.85 75.39 79.60 83.09 83.38 87.61 81.05 44.40 75.49 66.86 85.42 90.00 79.33 88.08 64.85

Bold represents the highest indicator value.

Fig. 9 | Point cloud segmentation results.
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building point cloud data and proposes solutions to address the short-
comings of traditional point cloud segmentation methods in capturing
complex architectural details.

However, it is important to recognize that digital surveys in the
architectural field are often affected by factors such as shadow cones, noise,
and reflections, which may occlude or distort the surveyed 3D data. These
factors can impact the completeness and accuracyof the point clouds,which
in turn affects the performance of the segmentation model. Shadow cones
may cause occlusions in poorly illuminated areas, while reflections or noise
from nearby surfaces can lead to inaccurate point cloud data. These chal-
lenges can result in misrepresentations of architectural elements, particu-
larly those with intricate or subtle details, which are crucial for accurate

segmentation. In this context, themultimodal features provided by theRW-
MAPCD dataset represent a significant advancement in this field. The
proposed MK3DNet segmentation method integrates multiple modalities,
which helps reduce the impact of such interferences.

In the RW-MAPCD, there exists a significant imbalance in the dis-
tribution of samples across different categories, which critically affects the
performance of the single-modal point cloud segmentation model. As
illustrated in Table 5, the floor and roof categories constitute 18.11% and
23.32% of the dataset, respectively, and possess distinct geometric features
that facilitate the network’s ability to learn the segmentation patterns for
these categories effectively; thus, they exhibit superior performance in other
networks. Although the category of table accounts for only 0.99% of the

Fig. 10 | Segmentation confusion matrix for MK3DNet.

Table 4 | Summary of segmentation performance indicators by category

Category bm cn dr df fl lt or pl pq rf tb tr wl wd

Precision 0.81 0.92 0.87 0.89 0.98 0.88 0.59 0.85 0.68 0.96 0.93 0.90 0.92 0.82

Recall 0.92 0.86 0.95 0.93 0.89 0.91 0.64 0.87 0.98 0.88 0.97 0.87 0.95 0.75

F1-Score 0.86 0.89 0.91 0.91 0.93 0.90 0.61 0.86 0.80 0.92 0.95 0.88 0.94 0.79

Bold marks the top Precision, Recall, and F1-Score for each category.
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dataset, it is relatively common in most point cloud datasets, allowing it to
demonstrate satisfactory performance in other networks as well. Despite the
substantial sample imbalance observed in the ancient building data, the
proposedmethod exhibits superiorperformance compared toother existing
point cloud segmentation networks.

These research findings align with the perspectives presented in the
literature49,50 regarding the role of multimodal learning in the protection of
cultural heritage, indicating that rich contextual information can sig-
nificantly enhance segmentation accuracy. The outcomes of this study are
promising; however, some limitations still exist. First, the coverage of the
RW-MAPCD dataset needs to be broadened to accommodate a wider
variety of architectural styles and diverse environmental contexts. Secondly,
the reliance of MK3DNet on KNN for segmentation and completion
introduces significant computational complexity. Future investigations
could focus on optimizing computational efficiency and exploring more
effective methodologies. Furthermore, while the current work primarily
utilizes color projection and point cloud data, the potential value of other
modalities, such as depthmaps and line drawings, within the dataset has not
been thoroughly explored. Future research should delve deeper into the
contributions of these modalities, particularly concerning the identification
and classification of complex structural elements, to enhance the overall
model’s expressiveness and applicability.

In terms of application for conservation and digital heritage services,
the proposed approach opens up new possibilities for accurately capturing
and documenting heritage sites. With the ability to segment intricate
architectural elements, themodel can support the creation of highly detailed
3D models for use in preservation projects. These models can assist in the
assessment of structural integrity, guide restoration efforts, and enable
virtual tours for educational or cultural engagement purposes. Additionally,
digital archives can be developed that allow future generations to explore
and study these buildings without compromising their physical preserva-
tion. The study’s findings lay a strong foundation for future advances in the

application ofmultimodal segmentationmodels to support the preservation
of cultural heritage in both physical and digital forms.

Data availability
The dataset generated and analyzed in the current research is available from
the corresponding author upon request.

Code availability
The code used in the current research is available from the corresponding
author upon request.
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