Table 2 Detailed semantic segmentation results for projected image datasets

From: Cross modal networks for point cloud semantic segmentation of Chinese ancient buildings

Methods

mIou (%)

aAcc (%)

Per Class IoU(%)

bm

cn

dr

df

fl

lt

or

pl

pq

rf

tb

tr

wl

wd

DeepLabV356

22.18

69.63

24.0

0

19.34

12.83

63.24

16.65

2.91

37.35

0

62.6

9.21

3.45

57.43

1.45

CCNet57

22.94

70.02

25.91

0

25.55

9.02

62.98

19.45

1.71

36.47

0

63.77

9.46

6.51

59.48

0.86

FCN58

23.63

71.6

26.01

1.23

24.34

13.35

65.86

18.69

2.61

38.76

0

64.64

9.6

4.23

60.67

0.78

DeepLabV3 + 59

24.91

72.17

28.51

0

24.97

16.38

69.63

17.72

3.56

39.1

0

65.73

11.74

0.71

61.43

9.32

GCNet60

69.89

90.55

65.08

72.44

75.74

77.94

89.7

62.57

41.07

72.8

55.18

84.19

55.83

70.4

87.81

67.67

SegFormer61

70.88

90.71

65.51

71.71

75.30

77.44

89.67

64.45

40.46

73.46

63.83

84.60

57.48

71.40

88.1

68.9

Mask2Former55

74.31

91.30

68.59

79.80

79.44

81.59

90.10

68.86

45.84

76.63

69.54

85.11

61.91

73.63

88.73

70.60