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Oracle bone inscriptions provide critical insights into ancient Chinese history. However, the retrieval and
analysis of inscription rubbings remain challenging due to fragmentation, weathering, and non-
standardized character forms. These challenges fundamentally limit the applicability of conventional
image retrieval methods, an issue exacerbated by the lack of large-scale annotated datasets. To tackle
these challenges, we introduce the first dataset and a Multi-step Strategy for Homologous Rubbing
Retrieval (MSHRR). MSHRR employs a three-stage pipeline integrating character extraction, cross-
rubbingmatching, and similarity scoring, bypassingOptical Character Recognition (OCR)dependencies.
This novel framework outperforms state-of-the-art methods in handling glyph structures through its
morphology-aware paradigm. More importantly, MSHRR has found 276 new homologous sets,
accounting for over10%ofdocumentedcases in twenty years.Ourbenchmarkalsooffers a reproducible
evaluation framework for computational archeology and reveals new historical connections.

Oracle Bone Inscriptions (OBIs), dating back over 3600 years to the Shang
dynasty, constitute oneof themost invaluable cultural andhistorical relics in
Chinese history. As the earliest known systematic form of Chinese writing,
they offer invaluable insights into the political, social, religious, and lin-
guistic landscapes of ancient China. These inscriptions not only document
royal divinations and significant historical events but also serve as a cor-
nerstone for understanding the evolution of Chinese characters andwriting
systems. The study of OBIs has been indispensable for historians and
archeologists in reconstructing the ancient Chinese civilization, unveiling
profound facets of its language, culture, and governance structures.

Despite their immense historical significance, there remains a pivotal
challenge in the realm of OBI research: the identification and retrieval of
homologous rubbings—rubbings derived from identical oracle bones. The
capacity to compare these rubbings is indispensable for tracing the prove-
nance and reconstructing the original context of the inscriptions. Histori-
cally, organizing such data has been an arduous task, often spanning several
years and heavily reliant on manual image retrieval and comparison. A
notable milestone in this endeavor was the compilation of the Collection of
Oracle Bone Inscriptions (COBI)1, which took an extraordinary 26 years to
complete and stands as the most comprehensive archive of oracle bone
rubbings to date. Despite the extensive 26-year compilation effort behind
COBI, the assembly of homologous rubbings remains incomplete2. Identi-
fying homologous rubbings poses a formidable challenge due to the visual

disparities among them. These disparities, whichmay arise from substantial
contour variations, varying degrees of completeness of the oracle bones, and
differing rubbing techniques, significantly complicate the efficacy of image
matching algorithms, as exemplified in Fig. 1.

For the homologous rubbing retrieval task, the textual content that is
identical in imagery serves as the primary basis for determining their con-
sanguinity. In recent years, Artificial Intelligence (AI) technology based on
character recognition has played a significant role in the organization of
ancient documents3–5. However, this character recognition-based approach
is not completely applicable to the collationofOBIs, as character recognition
necessitates the annotation of characters, and the characters inOBI are only
partially deciphered6–8. The incompleteness of their decipherment renders
character-level annotation impractical, as illustrated in Fig. 2. Due to this
incompleteness, compounded by the lack of annotated datasets, the field
faces significant challenges. Particularly when developing AI models,
although character recognition has traditionally been a core component of
text-based image retrieval tasks, AI models in the homologous rubbing
retrieval task must effectively address the complexities of OBIs without
relying on character recognition.

The evolution of AI-assisted OBI research has been propelled by
specialized datasets, yet critical gaps remain. In 2015, Guo et al. proposed an
OBI recognition model based on the dataset Oracle-20K, which, despite its
comprehensiveness, was limited in scope due to the absence of a publicly
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accessible dataset9. This constraint hindered further research until the
introduction of the OBC306 dataset by Huang et al. in 2019, boasting
309,551 images across 306 classes and sparking a renewed interest in OBI
recognition10. TheOBC306 dataset’s extensive collection and categorization
provided a fertile ground for numerous subsequent studies11–13. Subse-
quently, a succession of OBI datasets emerged, including the HWOBC,
which features 3,881 classes of handwritten OBI characters14, and the
Oracle-MNIST dataset, comprising 28 × 28 grayscale images of 30,222
ancient characters from 10 categories15. A significant contribution to the
field was made by Liu et al. with the HUST-OBC dataset, encompassing
77,064 images of 1588 deciphered characters and 62,989 images of 9411
undeciphered characters, totaling 140,053 images16. Beyond character-level

datasets, Meng et al.17 pioneered the first unsupervised framework to
organize Shirakawa’s handwritten annotations, constructing a benchmark
for neural network learning from unsegmented OBI documents. While
these datasets have enabled advancements in OBI recognition, they usually
consist of images that are cropped or denoised character images from
rubbings and ignore the broader context crucial for comprehensive AI
understanding. The only publicly available dataset with complete oracle
bone rubbings is a detection dataset by Liu et al., which, despite including
9,200 rubbings, lacks character category annotations18.

Image retrieval of historical handwritten documents is a highly
remarked issue, serving as a valuable tool to assist historical researchers in
analyzing the content of images of handwritten documents. In ICDAR2019
Competition on Image Retrieval for Historical Handwritten Documents19.
Lai et al. proposed a novelmethod by encoding Pathlet and SIFT for feature
extraction and clinched the best result20. Compared to page retrieval, amore
challenging task in the ICFHR 2020 competition is to retrieve document
fragments from the same page. The winner of this competition uses a
method based on training two different residual networks in terms of style
and writer identification21. Peer et al. present a novel neural network
architecture that combines a residual backbone with a feature mixing stage
to improve retrieval performance22. Chammas et al. proposed a deep
learning systemwith a feature descriptor that has shown high performance
on two Latin historical datasets ICDAR 2019 and ICFHR 2020, and one
Arabic non-historical KHATT dataset23. Although the collation of homo-
logous rubbings falls under the taskofhistorical document retrieval, it differs
from the aforementioned task domain. The retrieval target in this case is
different versions of the same document rather than different fragments of
the same document. Furthermore, the number of different versions of the
same oracle bone fragment is not abundant, making it unsuitable for
training deep models with supervised learning to retrieve images with
similar features. Instead, it is more suitable for serving as a validation set for
unsupervised learning to evaluate the performance of algorithms.

Matching images that depict the same scene or object are commonly
based on sparse local features, which consist of key points along with their
corresponding descriptors representing the local appearance. Learning-
based descriptors, such as SuperPoint24, often combine point detection and
the description of the interest. Deep learning-based matchers, such as
SuperGlue25, are deep networks trained to perform joint matching of local
features and outlier rejection given a pair of input images. SuperGlue
operates on key points equipped with descriptors using a sparse matching
network. Recent advances like DeDoDe26 propose detector-free methods

Fig. 1 | Visual Dissimilarity Among Homologous
Rubbings. The left panel illustrates the matching
feature points identified by our method, while the
right panel displays the feature points extracted by
SuperGlue25. The cases result in visual dissimilarity:
(a) Significant contour differences due to fragment
assembly. (b) Inconsistencies in the completeness of
the oracle bone pieces between two rubbing sessions.
(c) Notable visual disparities in the images resulting
from different rubbing techniques.

Fig. 2 | A comparison of homologous oracle bone rubbings from different per-
iods, showcasing the challenges in recognition. The enlarged characters (top)
exhibit variations due to distinct rubbing techniques. The blue areas denote three
undeciphered characters lacking modern Chinese annotations. The orange areas
indicate two deciphered characters with known modern equivalents. The yellow
areas highlight two characters that are severely worn,making them indistinguishable
and a matter of scholarly debate.
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that leveragedensenetworks to extract local features. For complex structural
matching tasks, methods combining fine-grained feature association with
the Hungarian algorithm27–29 have shown efficacy in establishing robust
correspondences under ambiguities. Homologous rubbings of oracle bone
fragments inherently contain a sufficient amount of approximate local
features. Wu et al. employed a deep neural network-based feature extractor
called “Diviner” for homologous rubbings retrieval (https://www.xianqin.
org/blog/archives/17264.html). However, deep feature extractors typically
focus on the texture features of the rubbings. Different versions of the same
oracle bone inscription are often produced by different rubbers, leading to
variations in image texture due to different rubbing techniques. Addition-
ally, since the materials of oracle bones are primarily turtle shells or animal
bones, the use of the same material results in similar texture features across
different rubbings. Therefore, to achieve a more efficient comparison of
oracle bone fragments, models need to possess an understanding of the
information conveyed by the rubbings.

Despite the paramount significance of retrieving oracle bone rubbings,
historians face considerable challenges in this endeavor, often necessitating
decadesof expertise.These challengesare furtherexacerbatedby the absence
of specialized datasets, the visual inconsistencies among homologous rub-
bings, and the practical infeasibility of performing character-level
annotations.

In response to these concerns, we propose a dataset specifically tailored
for homologous rubbing retrieval, accompanied by a comprehensivemulti-
step learning model that sets a new benchmark in the field.
1. We propose a comprehensive dataset for homologous rubbing

retrieval, which is expected to significantly advance research in this
field and encourage broader participation in the application of AI to
historical studies.

2. We present the world’s first hybrid method for content-based image
retrieval of OBI rubbings, which addresses the challenges posed by
visual dissimilarity and the absence of character-level annotations. The
proposed method can serve as a benchmark model for homologous
rubbing retrieval, achieving a recall@5000 of 88.44% and a top-10
accuracy of 90.09%.

3. The proposed method identifies 276 new retrieval results, constituting
approximately 10%of the total homologous rubbings over the past two
decades. Furthermore, within the newly released OBI images, we dis-
cern 3991 pairs of images that are homologous to those in COBI.

Methods
Motivation
Homologous rubbing retrieval plays a pivotal role in two distinct applica-
tions within the study of OBIs. The first application is crucial during the
extensive collation of oracle bone rubbings, where it is imperative to verify
whether collected rubbing images have been previously published. It is
noteworthy that even in comprehensive published collections, there is a
possibility of overlooked homologous rubbings. Consequently, scholars
persist in the identification of these missing pairs. In 2003, Wang et al.
conducted a seminal analysis of homologous rubbings within the “Sup-
plementary Collection of Oracle Bone Inscriptions (SCOBI)”30, identifying
189 instances of internal homologous rubbings within SCOBI and 733
instances of mutual homologous rubbings between the COBI and
SCOBI31,32.

The second application arises during the study of a specific oracle bone,
where the objective is to locate different versions of its rubbing. This is
essential for tracing the historical dissemination of rubbings in various
catalogs. Besides, the institutional curation process requires the doc-
umentation of the provenance and circulation of oracle bone collections.
This methodical examination is vital for understanding the historical
journey of these artifacts. In 2020, Zhao et al. identified 27 sets of oracle
bones from theNational Library ofChina thatwere unmarked inCOBI, and
20 sets of homologous oracle bone rubbings thatwere redundantly recorded
in both COBI and SCOBI due to the disparate sources of rubbings33.

The following two applications correspond to two distinct image
retrieval problems: (1)Homologous Rubbing Alignment. This task involves
aligning homologous rubbings from two distinct collections of OBIs, often
representing the most labor-intensive stage in the compilation of oracle
bone catalogs. (2) Single Rubbing Retrieval. This task focuses on retrieving
homologous rubbings of a specific target within a given collection, exem-
plified by those in COBI and SCOBI.

Both retrieval tasks rely on determining the homology between two
rubbings by meticulously analyzing their content for similarities. Despite
differing in the procedure, both tasks confront a shared obstacle: to effi-
ciently process and compare a vast number of sample pairs to pinpoint the
relatively few correct matches. In the instance of SCOBI, which comprises
rubbings of 13,170 OBI fragments, the task of identifying merely about 300
internal homologous rubbing pairs within such an extensive dataset results
in an exceedingly low retrieval ratio, approximately 600,000:1.

The details of dataset
The homologous rubbing dataset is curated from the images in the SCOBI
for the homologous rubbing retrieval task. SCOBI, which serves as an
expansion to the COBI, is recognized for its broader inclusivity. SCOBI is
constructed by applying less stringent criteria for the exclusion of homo-
logous rubbings34. This more inclusive approach, while beneficial for the
richness of the collection, introduces challenges forhistorical researchon the
Shang dynasty. As a result, the dataset is organized to facilitate the study and
retrieval of homologous rubbings. It has been made accessible on the OBI
data platform ‘yin qi wen yuan’ (https://jgw.aynu.edu.cn/home/down/
detail/index.html?sysid=19).

To establish a dataset tailored for homologous rubbing retrieval, we
draw inspiration from the internal collation task of SCOBI. SCOBI has an
impressive collection of rubbings derived from 13,170 oracle bone frag-
ments, including separate rubbings from both sides of certain bones of a
total of 14,834 images. AlthoughWang et al. analyzed the internal collation
of homologous rubbings within the ‘Supplementary Collection’ and iden-
tified 189 instances31,32, their efforts did not exhaustively uncover all the
rubbings. Thus, we integrate information on homologous rubbings dis-
covered by scholars over the past two decades. These sources encompass
supplementary tables in OBI reference books35,36, records from oracle bone
organization reports33,34, and authoritative website information (https://
www.xianqin.org/blog/archives/17264.html). Despite undergoing multiple
rounds of collation, the portion of the data does not comprehensively cover
all pairs of homologous rubbings.

For the real-world retrieval tasks, it is challenging to explore all
potential instances within the dataset. Consequently, we develop an unsu-
pervised algorithm specifically designed for retrieval tasks. Utilizing this
algorithm,wehave identified25previouslyunrecordedpairs ofhomologous
rubbings. Following verification by historians, these pairs have been
incorporated into the dataset as additional ground truth, thereby enriching
the existing body of knowledge.

The proposed dataset encompasses 14,834 rubbing images within
SCOBI. Among these images, the authentic homologous rubbing pairs
consist of 303 instances,meticulously curated fromamultitude of resources,
encompassing monographs, scholarly articles, online databases, and the
foremost predictions generated by our methodology. Note that an addi-
tional 28 homologous pairs were excluded from the ground truth. The
reason is the insufficiency of image data to verify their homology. These
excluded pairs can be classified into three distinct categories. First, there are
11 instances where rubbings from spliced oracle bones were considered
homologous to two separate fragment rubbings from the same oracle bone,
but they lacked clear-cut visual cues indicating homology. Second, 16 cases
involved non-rubbing artifacts that partially obscured or overlapped with
the rubbing images. Finally, in a single case, two rubbings represented the
front and back of the same oracle bone fragment, yet they failed tomeet the
inclusion criteria because of the lackof conclusive visual homology evidence
as mentioned above.
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In our dataset, the numerical identifiers embedded within the file-
names of the rubbing images correspond precisely to the SCOBI identifi-
cation numbers assigned to each respective oracle bone. The absence of a
letter suffix appended to the number in the filename signifies that a single
rubbing is available for that particular oracle bone. Conversely, the inclusion
of the letters ‘f’, ‘b’, or ‘s’ as suffixes within the filename denotes rubbings
derived from the front, back, and bone socket of the oracle bone, respec-
tively. Additionally, sequential letters like ‘i’, ‘j’, ‘k’, and so forth within a
filename signify that, although these rubbings originate from the same
oracle bone, they represent discrete, non-contiguous sections and cannot be
seamlessly assembled together. This structured naming convention greatly
enhances the organization and traceability of the rubbing images within our
dataset.

Problem formulation
The problem formulation is predicated on the fundamental assumption
that the features of rubbings from homologous sources follow a
Gaussian distribution around a common mean. We consider each
rubbing xi = μx + ϵx, where ϵx is distributed according to a Gaussian
distribution:

ϵx � N ð0;Σ
x
Þ; ð1Þ

where μx and Σx represent the mean and covariance of the feature dis-
tribution, respectively. Thus, the expectation of the loss of homologous
rubbings is formulated as:

Ejjxi � xjjj22 ¼ Ejjϵix � ϵjxjj22: ð2Þ

The expectation for the loss of non-homologous rubbings is:

Ejjxi � ykjj22
¼ E½jjðμx � μyÞ þ ðϵix � ϵkyÞjj22�
¼ E½jjðμx � μyÞjj22 þ 2ðμx � μyÞT ðϵix � ϵkyÞ þ jjϵix � ϵkyjj22�:

ð3Þ

From Eq. (1), it is evident that the expectation of ϵix and ϵ
k
y are both 0,

when μx and μy are both constant vector. Thus, Eq. (3) can be simplified as:

Ejjxi � ykjj22 ¼ E½jjðμx � μyÞjj22 þ jjϵix � ϵkyjj22�: ð4Þ

For non-homologous rubbings, which are quite similar and easily
misaligned, the Gaussian distribution is similar, meaning Σx ≈ Σy. Thus,
Ejjϵix � ϵkyjj22 � Ejjϵix � ϵjxjj22, and

Ejjxi � ykjj22 ¼ Ejjðμx � μyÞjj22 þ Ejjϵix � ϵkyjj22 > Ejjϵix � ϵjxjj22: ð5Þ

Under ideal conditions, homologous rubbings and non-homologous
rubbings can be easily distinguished.

Due towear and tear onoracle bone rubbings causedbyvarious factors,
the disparity between homologous rubbings typically exceeds that of non-
homologous rubbings, rendering the establishment of Eq. 5’s conclusion
challenging. To rectify the error, we propose a typesetting mechanism, e.g.,
Topological Structure Penalty. For the pth character of the ith rubbing, its
feature is xpi and its location is lpi . Thus, the distance between homologous
rubbing characters can be formulated as

Ep;qðminm;nðjjdistðlpi � lqi Þ � distðlmj � lnj Þjj22ÞÞ ð6Þ

When the rubbings are homologous,

minm;nðjjdistðlpi � lqi Þ � distðlmj � lnj Þjj22Þ ¼ 0: ð7Þ

Thus,

Ejjxi � ykjj22 þ Ep;qðminm;nðjjdistðlpi � lqi Þ � distðlmk � lnkÞjj22ÞÞ > Ejjxi
�ykjj22 > Ejjxi � xjjj22

ð8Þ

In other words, the typesetting mechanism increases the matching lower
bound of non-homologous rubbings, which makes homologous rubbings
easier to be recognized.

The overview of benchmark model
The benchmark model’s primary objective is to evaluate the similarity
between a query image and a set of target imageswithin an unlabeled image
training dataset. As shown in Fig. 3, we propose aMulti-step based method
for Homologous Rubbing Retrieval (MSHRR), which includes (1) Extrac-
tion of Rubbing Features, (2) Matching of Rubbing Features, and (3)
Rubbing Rank Scoring. For clarification, we list the important notations in
Table 1.

Fig. 3 | An illustration of the three steps in MSHRR. Rubbing feature extraction is
performed using a cascaded network designed to extract character features from
rubbings; Rubbing featurematching comparesmorphological and spatial features to

find analogous glyphs, bypassing OCR; Rubbing rank scoring ranks rubbings by
glyph similarity, structure, and matched pairs to prioritize identical content.

https://doi.org/10.1038/s40494-025-01859-9 Article

npj Heritage Science |          (2025) 13:292 4

www.nature.com/npjheritagesci


Rubbing feature extraction is a cascaded neural network engineered to
extract key features from specific regions within rubbing image, bypassing
the need for OCR. This module is composed of three integral components:
an object detection network, a generated adversarial network, and a contrast
network. This is represented as:

Fðz; θFÞ ¼ fX; Lg; ð9Þ

where X denotes a set of nodes and each node encapsulates the morpho-
logical features of an individual character. L represents another set of nodes,
where each node represents the positional data of a character.

Rubbing feature matching employs feature matching under the pre-
mise that homologous rubbings share the same textual content. Given the
limitations of OCR in the context of Oracle Bone Inscriptions (OBI), our
method focuses on evaluating the morphological resemblance and the
spatial configuration of characters on the rubbings. By calculating the fea-
tures of both the query imageXq, Lq and the target imageXt, Lt, the proposed
method is designed to precisely identify K analogous pairs of glyphs.

Rubbing rank scoring leverages the K glyph pairs matched through
Rubbing Feature Matching to assign scores and rank the retrieval results.
This method integrates three vital evaluation criteria: glyph similarity,
congruence in topological structure, and the influence of the number of
matching characters K on the previous two factors. By integrating these
elements, it is tailored to address specific and potential challenges in the
retrieval process. The ultimate objective of Rubbing Rank Scoring is to
accurately assign priorities to rubbing pairs with identical content. In this
way, it ensures thathomologous rubbings, namely thosehavingprecisely the
samecontent, are given theutmostprecedencewithin the retrieval sequence.

Due to practical constraints in character recognition annotation,
multiple deep learning models are trained to capture the intricacies of
character morphological features and their positional distribution on oracle
bone rubbings. TheRubbing Feature Extraction framework comprises three
independently trained deep neural networks with distinct roles: character
detection (localizing glyphs), character extraction (isolating text regions),
and character description (generating morphological vectors).

Character detection identifies OBI glyphs within rubbing images and
their spatial coordinates, enabling subsequent analysis of glyph distribution.
A YOLOv8-based model37 is used to first localize OBI glyphs in the rubbing
image.Thisdetectionprocess converts the input image intoa set of individual
character images, denoted as zi, where i spans from1 toN (N is thenumberof
the detected characters). Concurrently, the model extracts the positional
coordinates li for each glyph, thereby establishing the coordinate set L.

Character extraction processes the detected glyph images zi to remove
non-textual artifacts. Unlike modern documents, oracle bone rubbings cap-
ture both inscriptions and surface indentations caused by the carving process.
Variations in rubbing techniques lead to significant visual differences in glyph

representations, as depicted in Fig. 2. To ensure the content-based retrieval
focuses on textual content, we employ aU-Net-basedGenerative Adversarial
Network38 to isolate textual regions. This step results in refined glyph images
ẑci , containing only the characters from the original rubbing images.

Character description generates feature vectors for OBI characters.
Due to incomplete OCR coverage, we train a siamese network-based
matching model39 to evaluate the glyph similarity. This training process
results inmorphological descriptors for each character, transforming ẑci into
the character morphological vector xi, which collectively forms the set X,
enabling clusteringof stylistically similarOBI characters in the feature space.

Rubbing feature matching aims to maximize the identification of
characters sharing identical topological structures and spatial configura-
tions, while explicitly addressing false positives (unique character mis-
matches) and false negatives (repeated character omissions). This is
achieved by computing the correlation between cascade features {Xq, Lq}
(includingmorphological and spatial features) fromquery imageZq and {Xt,
Lt} from target image Zt.

Character morphological similarity is evaluated using a bipartite
matching algorithmapplied to a graph representedasBS= (Xq,Xt,ES). In this
graph, ES denotes the set of edges connecting nodes from Xq to Xt. The
weights of these edges are dynamically adjusted by incorporating both
feature dissimilarity dðxti ; xqj Þ and spatial inconsistency penalties, filtering
false positives caused by visually similar glyphs in inconsistent positions. By
leveraging the Hungarian algorithm40, the maximum matching within the
bipartite graph G is determined, yielding a matching set M ⊆ E that
prioritizes geometrically consistent pairs.

To address false negatives caused by repetitive characters, the RAN-
SAC algorithm41 is utilized to validate correspondences through the
HomographymatrixH. Specifically,we re-evaluateall charactercoordinates
in Lq bymapping them to L̂

q
viaH, recovering legitimatematchesmissed by

the global optimization constraint. A refined bipartite graph B̂
P ¼

ðL̂q; Lt; EPÞ is then constructed to identify similar glyphs and spatial dis-
tributions. In this graph, EP consists of vectors that represent the coordinate
mapping relationships. Both L̂

q
and Lt are positioned within a three-

dimensional coordinate system, with L̂
q
having a z-axis coordinate of 0 and

Lt set to 1. By introducing the z-axis coordinate to distinguish different
character instances, spatial ambiguities caused by repeated characters are
explicitly resolved. The coordinate pairs ðl0ti ; lqj Þ from these sets are trans-
formed into vectors < l0ti ; l

q
j > , which form the edgesEP. Simultaneously, the

set of coordinate pairs S is converted into a set of vectors S0, which serves as a
reference for filtering and identifying more accurate matching pairs
within EP.

Following the homography-based coordinate augmentation, the geo-
metric verification employs dual dynamic thresholds to concurrently
mitigate false positives (incorrect matches) and negatives (valid match
omissions) caused by repetitive characters. The angular threshold Tθ (Eq.
(11)) suppresses false positives by enforcing angular consistency over initial
candidate pairs S, generating filtered matches M0 � S. The distance
threshold TΔd (Eq. (12)) then processes rejected pairs BS nM0 through
residual error analysis Δdij ¼ jdij � μSdj. The final match set S0 is obtained
through a two-stage refinement, formalized as:

S0 ¼ M0 ∪ hxti ; xqj i 2 BS nM0jΔdij ≤TΔd ^ θij ≤Tθ

n o
ð10Þ

where dij ¼ dðxti ; xqj Þ, μSd is the global distancemean from S, and BS denotes
the initial bipartite edge set. This dual-threshold mechanism synergistically
resolves repetitive character ambiguities: Tθ eliminates directionally
inconsistent matches via angular constraints, while TΔd compensates for
overly-strict filtering by recovering geometrically valid pairs through
adaptive residual thresholds.

Tθ ¼ max
hlti ;lqj i2S

arccos
hlti ; lqj i � μSl

k hlti ; lqj i kk μSl k

 !
; μSl ¼

1
jSj
X
S

hltk; lqmi ð11Þ

Table 1 | List of important notations

Notation Description of the Notations

Zq,Z t Query image, Target image

X q, X t The feature matrix of each character from a query image,
target image

Lq, Lt The location matrix of each character from a query image,
target image

BS,BL The bipartite matching graph calculated from {Xq, Xt}, {Lq, Lt}

ES, EP The edges in the BS, BP

M Matching characters set calculated from BS

S inliers set limited with {Lt, Lq}

M0 Optimal matching set filter from S

Tθ, TΔd Angular threshold calculated from ES,EP

S0 Optimal matching set by the aligment with Tθ, TΔd
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TΔd ¼ max
hxti ;x

q
j i2BSnM0

∣dðxti ; xqj Þ � μSd∣; μSd ¼
1
jSj
X
S

dðxtk; xqmÞ ð12Þ

OBI rubbing retrieval is conducted under the premise that oracle bone
fragments originating from the same source are likely to have partially
shared spatial distributions of characters. The set S0 has been compiled to
identify such character pairs. However, the presence of character pairs in S0

does not confirm that they are from homologous rubbings. Tomitigate this
uncertainty, a scoring system has been applied to S0, which assigns lower
scores to pairs that appear less likely to be part of homologous rubbings.

The character similarity score is primarily designed to address bad
cases where the content differs, but the characters on rubbings are visually
similar. This score is derived from the averageweight of the edgeswithin the
matching set S0, which is determined using the Hungarian matching algo-
rithm. The character similarity score is mathematically defined as follows:

S1 ¼
1
jS0j
X
m2M

expð�dmÞ; ð13Þ

where dm represents the distance between the matched characters, and jS0j
denotes the number of elements in the matching set S0.

The topological structure penalty primarily focuses on bad cases where
a common geometric distribution is formed by discontinuous oracle bone
characters with high frequency. To tackle this, triangulation of the character
matrices Lq and Lt is employed, leading to the generation of character
relationship matrices Gq and Gt. For any pair of homologous oracle bone
characters within thematched character set S0, the shortest distances within
the corresponding Gq and Gt are equal. Consequently, the topological
structure score is calculated as follows:

P1 ¼ 1� 2
jS0j× ðjS0j � 1Þ

XjS0 j
i¼1

XjS0 j
j ¼ iþ 1

1; if distðlti ; ltj Þ ¼ distðlli; lqj Þ
0; otherwise

(
;

ð14Þ

where lqi and l
q
j represent two vertices in Gq corresponding to characters in

S0. lti and l
t
j represent twovertices inG

t corresponding tocharacters inS0. The
function dist() denotes the shortest path between the two vertices.

The influence of character similarity and topological structure on the
assessment of rubbing content similarity is significantly diminished, espe-
cially when the number of characters in the matched set S0 is less than four.
This highlights the reduced impact of these factors as the number of
matching characters decreases. Consequently, a penalty term has been
introduced to mitigate the impact of high scores in these instances, thereby
enhancing the fairness and precision of the scoring system. The formula for
this penalty term is formulated as

P2 ¼
1

ð2jS0j � jM0jÞ2 þ 0:001
ð15Þ

The aforementioned adjustment ensures that the scoring system remains
robust across a variety of scenarios.

The primary goal of homologous rubbing retrieval is to facilitate his-
torians in systematically organizing rubbings. In the design of the scoring
mechanism, emphasis is placed on repositioning samples that do not con-
form to the criteria of homologous rubbings towards the end of the ranking.
This consideration has been integral to the development of the scoring
mechanism. The scoring formula is defined as:

Stotal ¼ S1 � P1 � P2: ð16Þ

This formula effectively distinguishes rubbings that are likely to be homo-
logous from those that are not, ensuring that the most relevant results are
given priority in the retrieval process.

Results
Datasets
We encompass the comprehensive training data essential for the Rubbing
Feature Extraction and propose a specially curated test dataset tailored for
homologous rubbing retrieval. Rubbing Feature Extraction consists of a
three-stage supervised learning framework, where each stage undergoes
individual training via a distinct supervised learning dataset. Regarding the
task of homologous rubbing retrieval, it has been meticulously scrutinized
under the rigorous lens of historical research. By harnessing the supple-
mentary tools presented in this paper, and through extensive studies
spanning numerous years dedicated to organizing oracle bonematerials, we
compile an exhaustive annotation set for homologous rubbings.

The dataset for the detection of OBI, sourced from ref. 18, comprises
9500 high-resolution scans of OBI rubbings. Each character within this
dataset is meticulously labeled with its precise upper-left and lower-right
coordinate boundaries. A critical observation regarding the dataset is that it
provides annotations for the locations of OBIs but does not include cate-
gorical labels for the inscriptions. Despite this limitation, the dataset is well-
suited for our research objective, which is exclusively the detection of OBI.
The oracle bone inscription denoising data is annotated by us. We select
4000 pairs of rubbing-facsimile images. The annotators reference the cor-
responding facsimile to delineate each pixel on the rubbing, resulting in
4000 pairs of pixel-level corresponding facsimile-rubbing pairs. Subse-
quently, using an OBI detection model, single-character samples from the
rubbings and facsimile characters corresponding to the pixels are obtained
including a total of 20,000 pairs.

The model utilized for feature extraction of oracle bone characters
employs the comprehensive OBI reference, “Compilation of Oracle
Bone Inscriptions”42, whichmeticulously documents 50,050 individual
facsimile images of characters, systematically classifying them into
4378 distinct categories. Leveraging this authoritative resource, the
annotation team meticulously captured screenshots of each character,
subsequently organizing them into a dedicated dataset tailored for
metric learning-based morphological feature matching of individual
characters. This meticulous approach guaranteed that characters
belonging to the same category in the OBI would exhibit sufficiently
close proximity in the feature space, thereby enhancing the accuracy
and reliability of the feature extraction process.

We evaluate the retrieval performance of our algorithm on two tasks:
homologous rubbing alignment and single rubbing retrieval. For the
homologous rubbing alignment task, considering that homologous rubbing
alignment poses an algorithmic complexity of O(n2) for retrieval, using the
entire test set directly would involve numerous comparisons between
entirely unrelated images, which can be computationally wasteful for
algorithm evaluation. To ensure efficient and targeted evaluation, we
carefully selected a subset of 3000 rubbings with correlated content for this
task. Thus, the goal of homologous rubbing alignment is to accurately
retrieve 303 homologous pairs from 9,000,000 possible matches. For the
single rubbing retrieval task, we directly used all images from our SCOBI-
based retrieval dataset for retrieval.

Experiment setup
Homologous rubbing alignment needs that the algorithm maximizes the
presence of precise matches within these top 5000 pairs, underscoring the
significance of accurate retrieval in the initial search results. To quantita-
tively evaluate the algorithm’s efficacy, we leverage Recall@5000 as a eva-
luation metric. Additionally, to evaluate the model’s proficiency in ranking
accurate results, we utilize Mean Rank (MR) and Mean Reciprocal Rank
(MRR) metrics. MR determines the average position of correct results
within the ranked list, whereas MRR evaluate the quality of the highest-
ranked accurate match. Since retrieval algorithms may not have strong
discriminatory ability in extreme cases, calculating MR and MRR for all
samples can only partially reflect the algorithm’s ability to rank search
results. Therefore, we compare the MR and MRR of the top 100 positive
examples identified by the algorithm.
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Single rubbing retrieval is a common retrieval task by historians,
wherein the correct retrieval of homologous rubbings is crucial for the study
of oracle bone provenance. Therefore, we selected 303 oracle bone rubbings
with homologous images as queries to evaluate the algorithm’s performance
in finding homologous rubbings among the remaining 14,834 images. To
comprehensively assess the algorithm’s performance, we leverage several
evaluation metrics, including top-1 accuracy, top-10 accuracy, MRR, and
MR, for comparative analysis.

Performance Metrics
Homologous rubbing alignment is shown in Table 2 lists the comparative
results of different methods, including MeCoq12, HiHpq43, Dino44, SIFT45,
SuperGlue25, SGMnet46, LightGlue47, DeDoDe26, and MSHRR(ours).

Upon scrutinizing the data, among End-to-end methods, Dino
demonstrates a notable Recall@5000 of 36.63%, significantly outperforming
MeCoq (4.95%) and HiHyq (3.63%) in the end-to-end category, yet still
falling short of the feature-based methods and content-base methods. The
proposed MSHRR exhibits the highest Recall@5000 at 88.44 %, showing
that the text-based methods can more effectively identify the features for
homologous rubbing retrieval. This higher recall rate indicates a robust
capability to find the correct matches, which is essential for the applications
that require comprehensive retrieval of rubbing features.

Among the feature-based methods, an analysis of the first 50 to 150
sample retrievals reveals a highly commendable performance. With a
remarkably highMean Reciprocal Rank at 50 (MR@50) of 25.5, it indicates
near-perfect accuracy within the top 50 retrievals. This accomplishment
underscores the robustness of these methods in promptly and accurately
identifying correct matches at an early stage.

Whenconsidering the top250 retrievals, SuperGlue standsoutwith the
lowest MR@250. This implies its superior precision in achieving accurate
matches among the highest-ranked results. The proposed MSHRR closely
trails behind. It has a Mean Reciprocal Rank at 250 (MRR@250) of 0.0239,
which is on aparwith that of the best-performingmethod.Theperformance
of MSHRR in terms of MRR@250 highlights its outstanding ability to
precisely rank correctmatches. This is a crucial factor in applications where
the retrieval sequence holds utmost importance.

The ranking precision of the proposed MSHRRmethod, especially its
high Recall@5000, is vital for prioritizing themost relevant rubbing features
in search results. As a result, it significantly improves the efficiency and
accuracy of the retrieval process. MSHRR’s precision in ranking plays an
instrumental role in ensuring that search results prominently showcase the
most relevant rubbing features, thereby enhancing the effectiveness of the
retrieval process.

Single rubbing retrieval is shown in Table 3 provides an in-depth
analysis of single rubbing retrievalmethods, underscoring the paramountcy
of retrieval consistency with the input rubbing’s content. From Table 3, we
observe the following:

MSHRR distinguishes itself by achieving the highest top-1 and top-10
accuracies, underscoring its precision and reliability in retrieving homo-
logous rubbings. With a top-1 accuracy of 84.81% and a top-10 accuracy of
90.09%, MSHRR ensures that the historical and cultural nuances of rub-
bings are preserved, aligning search outcomes with the intrinsic features of
the artifacts.

MSHRR exhibits an impressively low Mean Reciprocal Rank (MR) of
1.96,which indicates its efficiency in elevating relevant rubbings to the topof
retrieval results. Furthermore, MSHRR’s MRR of 0.8817 is the highest
among the evaluated methods, highlighting its unwavering accuracy in
ranking homologous rubbings. This metric is crucial for reflecting the
relevance of search outcomes, thereby enhancing the efficacy of the retrieval
process.

MSHRR’s ranking precision is instrumental in accentuating the most
pertinent rubbing features, reinforcing its status as the premier choice for
single rubbing retrieval tasks that necessitate stringent content consistency
and accuracy.

Computational efficiency analysis is shown in Table 4 lists experi-
mental results comparing the efficiency of various retrieval methods.

The end-to-end methods, such as MeCoq (38 seconds), HiHPq
(72 seconds), and Dino (57 seconds), are capable of completing pairwise
comparisons within tens of seconds. However, their recall@5000 scores are
still insufficient for homologous rubbing retrieval (see Table 2).

Notably, the propsed MSHRR achieves a 165 × pairwise acceleration
(0.2ms vs. 27.449ms) and 19 × total speedup (2.13h vs. 34.32h) over feature-
based counterparts like SuperGlue. These significant improvements are
vividly demonstrated through comparable retrieval metrics, as presented in
Table 2, with the best results highlighted in bold.

Table 2 | Comparison of homologous rubbing alignment methods on recall@5000, MR@50, MR@150, MR@250, MRR@50,
MRR@150, and MRR@250

Category Method Recall@5000 MR@50 MR@150 MR@250 MRR@50 MRR@150 MRR@250

End-to-end MeCoq12 4.95% 4228.56 4743.52 4846.512 0.0003 0.0002 0.0002

HiHPq43 3.63% 4514.06 4838.6 4903.61 0.0003 0.0002 0.0002

Dino44 36.63% 71.78 1959.74 3176.248 0.0649 0.0222 0.0134

Feature-based SIFT45 85.47% 30.30 81.56 156.76 0.0656 0.0286 0.0189

SuperGlue25 87.12% 25.50 76.76 138.30 0.0899 0.0371 0.0241

SGMnet46 83.82% 25.58 76.19 203.94 0.0899 0.0371 0.0241

LightGlue47 82.83% 25.92 81.53 396.48 0.0897 0.0368 0.0229

DeDoDe26 77.23% 25.50 75.50 525.24 0.0899 0.0372 0.0238

Content-based MSHRR (ours) 88.44% 25.50 76.63 160.45 0.0899 0.0372 0.0239

The bold values indicate the best-performing methods for each evaluation metric, highlighting the highest scores across all compared approaches.

Table 3 | Comparison of single rubbing retrieval methods on
Top-1 accuracy, Top-10 accuracy, MR, and MRR

Category Method Top-1 Top-10 MR MRR

End-to-end MeCoq 12 3.13% 10.23% 9.42 0.1389

HiHPq 43 2.47% 11.38% 9.37 0.1376

Dino 44 35.47% 53.13% 5.86 0.4522

Feature-based SIFT45 81.35% 85.97% 2.35 0.8488

SuperGlue25 84.48% 89.27% 2.05 0.8760

SGMnet46 79.70% 86.46% 2.41 0.8348

LightGlue47 78.38% 89.60% 2.22 0.8354

DeDoDe26 79.37% 83.99% 2.54 0.8278

Content-based MSHRR (ours) 84.81% 90.09% 1.96 0.8817

The bold values indicate the best-performing methods for each evaluation metric, highlighting the
highest scores across all compared approaches.
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Both the feature-based methods and the proposed MSHRR method
involve feature extraction (O(n) time complexity) and pairwise matching
(O(kn2) complexity, where k denotes the average number of feature points
per image). The feature-based methods extract an average of 767–10,000
match points per image, resulting in high O(kn2) matching costs (8–27ms/
pair). In contrast, the proposed MSHRR’s paleography-aware feature
selection extracts only a mean of 16 textual features per image, increasing
O(n) extraction time (2263ms/img vs. 11–35ms) but drastically reducing
O(kn2) matching to 0.2ms/pair. This architecture reduces dominantO(kn2)
costs from SuperGlue’s mean 850 × n2 to 16 × n2, outweighing linear O(N)
extraction overhead.

Content-based MSHRR demonstrates comparable effectiveness to
feature-based methods while achieving considerably higher efficiency.
Although MSHRR does not outperform SuperGlue in Table 3, this
superficial similarity in performance masks their fundamental metho-
dological divergence. As substantiated in Fig. 4, MSHRR’s semantic-
driven paradigm exhibits essential complementarity with feature-based
matching: SuperGlue prioritizes local keypoint matching for ranking,
whereas MSHRR leverages semantic understanding of holistic visual
patterns. These opposing strategies produce complementary blind spots,
with each method excelling in the exact scenarios that confound its
counterpart. For instance, SuperGlue struggles with rubbings containing
densely inscribed yet texture-deficient characters, where sparse dis-
criminative features hinder reliable keypoint matching. Conversely,
MSHRR underperforms when characters become semantically ambig-
uous due to degradation.

These observations highlight the necessity of task-specific method
selection and reveal the potential synergistic advantages of hybrid approa-
ches combining local features with global semantics. Motivated by this
complementary relationship, we investigate the integration and analyse the
synergistic effects of integratingMSHRR, a content-based retrieval method,
with image feature-based methods such as SIFT, SuperGlue, SGMnet,
LightGlue, and DeDoDe. This integration is designed to merge the textual
insight of MSHRR with the visual acuity of these established algorithms, as
demonstrated in Tables 5 and 6.

These results, as indicated by the “MSHRR+[Method]”notation, show
a notable enhancement in performance across various metrics. Specifically,
the integration leads to improved scores in Recall@5000, Top-1 Accuracy,
and MRR, while optimizing MR scores. These improvements highlight the
strength of the combined approach in delivering a more accurate and effi-
cient retrieval process.

The image feature-based methods in question utilize feature
extractors to pinpoint salient image characteristics. They also employ
Procrustes analysis, which involves rotation and translation matrices, to
determine the maximum number of inliers. This number serves as a
critical metric for imagematching quality. To complement this,MSHRR
introduces an optimized penalty term P2i, within the scoring system.
This term is designed to mitigate the character count penalty, especially
when dealing with fragmented oracle bone inscriptions as opposed to

complete rubbings. The revised penalty term is formulated as:

P2i ¼
1

maxð2jS0j � jM0j; 0Þ � Cinlier
; ð17Þ

where Cinlier is the number of inliers.
We conduct a detailed ablation study to analyze the effectiveness and

contribution of various components in our proposed model as shown in
Table 7. By incrementally adding the topological structure penalty P1 and
character count penalty P2 to the similarity score S, as well as optimizing P2
by replacing it with the image match method, denoted as P2i, we observe
changes in model performance and provided an in-depth discussion of the
results.

When P1 and P2 are independently applied as penalty terms, they
improve Recall@5000 by 31.68% and 52.80%, respectively. Considering the
role of S in calculating the similarity of character morphological features,
these results demonstrate that the penalty terms endow the model with the
capability to distinguish the distribution of similar character morphological
features, thereby enabling highly similar homologous rubbings to obtain
higher retrieval scores.When the S score is high, it indicates the presence of a
significant number of overlapping identical glyphs in the retrieval results.P1
targets the bad caseswhere the content continuity of these identical glyphs is
inconsistent, while P2 addresses the bad cases where there are incon-
sistencies among glyphs with the same distribution.

Although P1 and P2 can handle different bad cases, both scenarios
coexist when search results represent the same type of divination content as
the query, but differ in details such as the diviner, divination time, or
sacrificial objects. However, the situations they tackle are independent of
each other. For instance, P1 struggles with different types of divination
content from the same period due to the presence of only a few commonly
distributed characters, while P2 encounters difficulties with repeatedly
divined content because of the recurrent appearance of identically dis-
tributed characters representing the same content. Therefore, when P1 and
P2 work together, Recall@5000 increases to 88.44%. Furthermore, when the
penalty term P2 is replaced by P2i, which combines the similarity of image
texture features with content similarity, in the task ofHomologous Rubbing
Alignment, the introduction of image texture features has led to a significant
improvement of 3.96% in Recall@5000. Additionally, in the Single Rubbing
Retrieval task, the Top-1 accuracy has increased by 3.14%, and the Top-10
accuracy has risen by 2.31%. This enhancement can be attributed to the fact
that image texture features have boosted the scoring of different versions of
rubbings from the same oracle bone fragment, assuming no changes have
occurred to the fragments themselves.However, it’s important to note that if
the oracle bone fragments have undergone fragmentation or been recom-
bined in different versions, the image texture features can have an adverse
effect, explaining the increase of 1.55 in MR@150.

Furthermore, we conduct an ablation study to compare the retrieval
performance with and without the feature extraction as shown in Table 8.

Table 4 | Comparison of homologous rubbing alignment methods on time efficiency

Category Method Match Points Feature Extract Feature Match Total Time

End-to-end MeCoq12 N/A N/A N/A 38s

HiHPq43 N/A N/A N/A 72s

Dino44 N/A N/A N/A 57s

Feature-based SIFT45 4,927 34ms (CPU) 15.805ms (CPU) 19.77h

SuperGlue25 850 35ms (GPU) 27.449ms (GPU) 34.32h

LightGlue47 767 42ms (GPU) 18.653ms (GPU) 23.34h

DeDoDe26 10,000 172ms (GPU) 13.921ms (GPU) 17.53h

SGMnet46 998 11ms (GPU) 8.231ms (CPU) 10.29h

Content-based MSHRR (ours) 16 2263ms (GPU) 0.200ms (CPU) 2.13h
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The experimental results demonstrate that the introduction of the character
extraction module significantly enhances the learning performance of the
proposed model. For homologous rubbing alignment, the Recall@5000
performance increases from 35.31% to 92.40%, while the mean rank
(MR@150) drops sharply from 2540.93 to 78.18. For the single rubbing
retrieval, the accuracy of Top-1 and Top-10 increases by 35.7 and 13.86
percentage, respectively. These experimental results demonstrate that
character extraction plays a critical role in overcoming domain differences
between rubbing and transcribed copies, as feature disentanglement effec-
tively enhances the robustness of cross-domain character representation.
Note that the character descriptionmodel employs distinct training datasets
for rubbing characters and extracted characters. This separation is neces-
sitated by the significant domain discrepancy between the two character
types. To ensure a fair comparison as much as possible, we selected the
dataset–OBC306, as it currently represents the most comprehensive pub-
licly available collection of rubbing characters, containing 309,551 validated
character samples.

Discussion
In this section, we elaborate on the significance of our proposed image
retrieval task in historical research. Specifically, the retrieval outcomes
facilitate the identification of diverse versions of rubbings. Furthermore,
they prove to be instrumental in various data curation endeavors, including
oracle bone reconstruction, restoration of incomplete characters, and sen-
tence completion, thereby enhancing the overall efficiency and accuracy of
historical research.

Utilizing our method, we have meticulously organized and verified a
substantial collection of homologous rubbing pairs, totaling 5988 groups.
With the assistance of our method, we organized the homologous rubbings
around SCOBI. Referring to ref. 31, we searched for homologous rubbings
within SCOBI and for rubbings in SCOBI andCOBI that are homologous to
each other.Additionally, we collected andorganized all published records of
homologous rubbings. The search results are shown inFig. 5.With the aidof
our method, 286 pairs of homologous rubbings were retrieved within
SCOBI, among which 25 pairs had not appeared in published articles or

Fig. 4 | Representative examples comparing our
method and SuperGlue on two
complementary tasks. Homologous Rubbing
Alignment(i.e., identifying the rank of correct
matching pair from a large candidate set) and Single
Rubbing Retrieval(i.e., the left image is treated as a
query, and the rank denotes the position of its cor-
responding right image within the retrieved list).In
our method, the red connected points represent
correctly matched OBIs, while in SuperGlue, they
indicate successfully matched feature points.
a Examples where our method outperforms Super-
Glue in both alignment and retrieval. b Examples
where SuperGlue outperforms our method in both
alignment and retrieval. The comparison highlights
the complementary nature of the two methods.
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books. Combining with other literature, a total of 331 pairs of homologous
rubbings were organized. Meanwhile, 1711 pairs of homologous rubbings
were retrieved between SCOBI and COBI, of which 251 pairs had not
appeared in any published articles. Combining with other literature, a total

of 2710 pairs of homologous rubbings were organized. Despite nearly 20
years of manual homologous retrieval and organization, our algorithm still
retrieved nearly 10% of homologous rubbings that had not been discovered
in previous efforts, fully demonstrating the important role of our algorithm
in the organization of homologous oracle bone rubbings.

Moreover,wehighlight a significant advancement in the studyoforacle
bones housed at the National Library of China. The proposed method has
played a pivotal role in this discovery. Out of the 35,651 pieces of oracle
bones, 8021 are cataloged in COBI, yet they lack specific corresponding
records. The National Library of China has made 12,832 pieces of these
oracle bones publicly accessible (http://read.nlc.cn/specialResourse/
jiaguIndex). By applying our method to this subset, our algorithm has
successfully identified an impressive 3991 pairs of homologous rubbing
pairs (https://www.xianqin.org/blog/archives/21034.html). This achieve-
ment underscores the transformative impact of our algorithm inuncovering
previously unrecognized connections among these historical artifacts.

Manual homologous retrieval of oracle bone rubbings is impeded by
the intricate and fragmented nature of these artifacts. Figure 6 shows
examples that are frequently neglected during manual sorting but are cor-
rectly identified by our benchmarkmethod. These include small fragments,
such as those in Fig. 6a, which are reassembled fragments, or early rubbings
with partial text as shown in Fig. 6b. Despite minor outline differences,
certain fragments like those without visible join in Fig. 6c or the excessively
blurred ones in Fig. 6d are often intuitively overlooked.

Homologous rubbing retrieval is not solely used to trace the origin of
oracle bones by retrieving different versions of rubbings. It also plays a
crucial role in enhancing the rubbings. By integrating fragment retrieval
with oracle bone morphology analysis, incorrect assembly instances can be

Table 7 | Performance of various penalties on homologous
rubbing alignment and single rubbing retrieval

Method Homologous Rubbing
Alignment

Single Rubbing
Retrieval

Recall@5000 MR@150 Top-1 Top-10

S 33.33% 2696.28 37.62% 68.15%

S + P1 65.01% 712.59 52.14% 83.82%

S + P2 86.13% 79.16 83.33% 90.26%

S + P1 + P2 88.44% 76.63 84.81% 90.09%

S + P1 + P2i 92.40% 78.18 87.95% 92.40%

Table 8 | The necessity of character extraction onhomologous
rubbing alignment and single rubbing retrieval

Method Homologous Rubbing
Alignment

Single Rubbing
Retrieval

Recall@5000 MR@150 Top-1 Top-10

w/o Character Extraction 35.31% 2540.93 52.25% 78.54%

w/ Character Extraction 92.40% 78.18 87.95% 92.40%

Table 5 | Enhanced performance of MSHRR in combination with image-based methods on homologous rubbing alignment
metrics

Method Recall@5000 MR@50 MR@150 MR@250 MRR50 MRR150 MRR250

SIFT45 85.47% 30.30 81.56 156.76 0.0656 0.0286 0.0189

MSHRR (ours)+SIFT 91.41% 109.00 182.42 254.86 0.0664 0.0252 0.0163

SuperGlue25 87.12% 25.50 76.76 138.30 0.0899 0.0371 0.0241

MSHRR (ours)+SuperGlue 92.40% 26.96 78.18 144.26 0.0880 0.0364 0.0236

SGMnet46 83.82% 25.58 76.19 203.94 0.0899 0.0371 0.0241

MSHRR (ours)+SGMnet 87.45% 25.50 76.49 156.57 0.0899 0.0372 0.0240

LightGlue47 82.83% 25.92 81.53 396.48 0.0897 0.0368 0.0229

MSHRR(ours)+LightGlue 91.41% 71.28 133.7 207.16 0.0717 0.0280 0.0182

DeDoDe26 77.23% 25.50 75.50 525.24 0.0899 0.0372 0.0238

MSHRR (ours)+DeDoDe 91.42% 83.06 150.25 229.48 0.0686 0.0266 0.0172

Table 6 | Synergistic effects ofMSHRR integrationwith image-
based methods on single rubbing retrieval accuracy and
ranking

Method Top-1 Top-10 MR MRR

SIFT45 81.35% 85.97% 2.35 0.8488

MSHRR (ours)+SIFT 84.81% 91.25% 1.88 0.8859

SuperGlue25 84.48% 89.27% 2.05 0.8760

MSHRR(ours)+SuperGlue 87.95% 92.40% 1.73 0.9083

SGMnet46 79.70% 86.46% 2.41 0.8348

MSHRR (ours)+SGMnet 83.33% 87.45% 2.17 0.8654

LightGlue47 78.38% 89.60% 2.22 0.8354

MSHRR (ours)+LightGlue 83.00% 91.41% 1.88 0.8759

DeDoDe26 79.37% 83.99% 8.66 0.8153

MSHRR(ours)+DeDoDe 84.98% 91.42% 5.30 0.8803

Fig. 5 | Algorithms and experts search for homology in SCOBI and homology
search between SCOBI and COBI. a A total of 331 pairs of homologous images in
SCOBI have been found, and the data are from 286 pairs retrieved by the algorithm
and 306 pairs sorted out by the literature, of which 261 pairs are jointly confirmed, 25
pairs are independently identified by the algorithm, and 45 pairs are independently
sorted out by the literature. b A total of 2710 pairs of homologous images in SCOBI
and COBI have been found, and the data are derived from 2459 pairs sorted out by
the literature and 1711 pairs identified by the algorithm, of which 1460 pairs are
jointly confirmed, 251 pairs are independently identified by the algorithm, and 999
pairs are independently sorted out by the literature.
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identified. Figure 7a displays instances of incorrect assembly identification
through combined retrieval. On the other hand, when a matched fragment
is retrieved as a repeated rubbing in two pieced-together rubbings, a more
complete oracle bone can be reconstructed. As illustrated in Fig. 7b, an
oracle bone fragment can be pieced together with fragments from different
directions. Moreover, as shown in Fig. 7c, incorrect fragment assembly and
oracle bone fragment reconstruction may be discovered within the same
pair of retrieval results.

The enhancement of rubbings is not limited to fragment assembly but
also manifests in obtaining clearer glyphs or more complete edges.

Considering that variations in the handling of cracks during the rubbing
process can lead to blurred inscriptions. This may result in dissimilar
characters with the same distribution appearing in a homologous rubbing
pair. Different versions of the rubbingsmay contain the clearest version of a
particular character, and combining them can yield a sharper rubbing
image. This is illustrated in Fig. 8a. Additionally, the assembled fragments
may not represent the clearest version of the glyphs in the rubbing, and their
outer contours may be incomplete, as shown in Fig. 8b. Based on the
retrieval results of homologous rubbings, the information contained in the
assembled rubbing images can be further enhanced.

Fig. 6 | Several examples were identified by his-
torians with assistance from our method. a The
retrieved oracle bone fragments have a high simi-
larity score compared to the images stitched together
with the oracle bone fragments. bThe retrieved pairs
consist of the rubbings that only capture the text and
the corresponding rubbings that capture the com-
plete fragment edges' outlines. c The retrieved pairs
consist of rubbings and their corresponding rubbing
that captures the smaller fragments that occurred
after the initial rubbing was made. d The retrieved
pairs consist of rubbings with varying levels of
clarity.

Fig. 7 | Examples of the impact of homologous
rubbing retrieval in the correction of oracle bone
fragment assembly. a Correction of incorrect
rejoin. The blue boxes represent two different
assemblies of the same fragment. The blue ellipse
represents themorphological analysis of the edges of
the fragments. The red hook represents the correct
rejoin, and the red cross represents the wrong rejoin
assembly. bMore complete assembly. The disparate
regions of the two different assembly results of the
homologous rubbings are indicated by blue and
orange outlines, respectively, which together
assemble a more complete rubbing indicated by the
red arrow. c Correction of incorrect splicing and
more complete assembly, represented by combining
the symbols from a and b.
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Non-homologous fragments with high content similarity also play an
important role in oracle bone research, and such images often receive high
scores when conducting rubbing retrieval based on glyph relationships.
Figure 9a demonstrates the role of non-homologous rubbings with high
content similarity in the repair of incomplete characters. Unlike homo-
logous rubbings, which directly provide clear character forms, images with
high content similarity offer the same textual content, aiding in identifying
the specific character for unclear forms. Furthermore, when partial
incomplete character forms exist at the edges of fragments, non-
homologous rubbings with high content similarity provide hints for

completing the missing characters, as shown in Fig. 9b. Moreover, the
prediction of characters beyond the fragment’s edges that aremissing due to
fragmentation is an important direction in oracle bone research, known as
the “reconstruction of missing words.” Figure 9c showcases examples of
correct predictions of characters beyond the edges through the comparison
of fragments with the same content. It is essential to note that “recon-
struction of missing words” serves as crucial clues for fragment assembly in
oracle bone inscriptions.

In this paper, we have proposed a dataset that includes 14,834 images
and 303 sets of homologous rubbings specifically tailored for the oracle bone

Fig. 8 | Examples of the impact of homologous
rubbing retrieval in oracle bone research. a Two
homologous rubbings with clearer inscriptions were
selected for comparison. The inscriptions with
higher clarity were marked with blue rectangles.
b the rubbings retrieved of fragments with clearer
inscriptions, which can be used to update the
assembled images.

Fig. 9 | Examples of the impact of non-
homologous rubbing retrieval with high content
similarity. a The blue box on the black oracle bone
represents the unclear glyph caused by the cracking
and wear of the oracle bone, and the same glyph of
the homologous rubbing pointed by the blue line
completes the glyph, and the combination of the two
gives the clear glyph in the blue box in the blank area.
bThe blue box represents the complete glyph, which
completes the incomplete glyph on the homologous
rubbing, which is pointed by the blue arrow. c The
blue box is used to indicate the words in the
homologous oracle bone fragment on the left, and
the red box is used to represent the words in the
homologous oracle bone fragment on the right.
They have a complementary relationship, enabling
the assembly of a more complete example of
inscription groups.
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rubbing retrieval task. Furthermore, we propose a Multi-step based
Homologous Rubbing Retrieval method as a benchmark model. The pro-
posedmethod achieves a recall@5000 of 88.44% for rubbing alignment and
a top-10 accuracy of 90.09% for single rubbing retrieval. Specifically, the
proposed method identify 276 new homologous rubbing pairs, which
represent approximately 10% of the total data set. Moreover, the proposed
method identifies 3991 unrecorded pairs of homologous rubbings between
rubbings published by theNational Library of China and rubbings inCOBI.
In summary, our research not only elevates the technical sophistication
within this niche area but also underscores the invaluable and significant
applications of our methodology in advancing historical research and
archeological investigations.

Data availability
Thedataset is accessible on theOBI data platform–’yin qiwen yuan’(https://
jgw.aynu.edu.cn/home/down/detail/index.html?sysid=19).
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