Table 3 Comparison of single rubbing retrieval methods on Top-1 accuracy, Top-10 accuracy, MR, and MRR
From: An open benchmark for oracle bone rubbing image retrieval
Category | Method | Top-1 | Top-10 | MR | MRR |
---|---|---|---|---|---|
End-to-end | MeCoq 12 | 3.13% | 10.23% | 9.42 | 0.1389 |
 | HiHPq 43 | 2.47% | 11.38% | 9.37 | 0.1376 |
 | Dino 44 | 35.47% | 53.13% | 5.86 | 0.4522 |
Feature-based | SIFT45 | 81.35% | 85.97% | 2.35 | 0.8488 |
 | SuperGlue25 | 84.48% | 89.27% | 2.05 | 0.8760 |
 | SGMnet46 | 79.70% | 86.46% | 2.41 | 0.8348 |
 | LightGlue47 | 78.38% | 89.60% | 2.22 | 0.8354 |
 | DeDoDe26 | 79.37% | 83.99% | 2.54 | 0.8278 |
Content-based | MSHRR (ours) | 84.81% | 90.09% | 1.96 | 0.8817 |