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Supporting historic mural image
inpainting by using coordinate attention
aggregated transformations with U-Net-
based discriminator
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Digital preservation of historic murals is essential for protecting cultural heritage. Despite centuries of
damage, advances in inpainting offer new restoration possibilities. However, existing methods often
distort features like color and texture, and suffer from significant pixel-level blurring. We propose a
Coordinated Attention Aggregation Transformation (CAAT) GAN architecture with U-Net
discriminators to address these limitations. The CAAT generator extracts contextual information from
distant regions via a Coordinated Aggregation Transformation Block, expanding the receptive field
and improving content inference in missing areas to restore original color and texture. The U-Net
discriminator further refines results by providing both global and local confidence scores. We also
introduce DunHuang-Mural, a dataset of 7983 high-resolution historical murals. Trained on 6386
images and evaluated on 1597, our CAUGAN achieves significant gains in visual fidelity and structural
consistency over existing methods, demonstrating its utility for archeological mural restoration.

In the long history ofmankind, numerousmural imageswere left in ancient
temples, palaces, caves, and other historic sites. These mural images faith-
fully recorded the societies, cultures, religions, landscapes, and daily lives in
different human civilizations and their evolutions, which are extremely
significant in the studies of archeology, sociology and history. For example,
the Dunhuangmural images in theMogao Caves (also known as the Caves
of a Thousand Buddhas), constructed from 366 AD to around 1000 AD at
the edge of the Taklamakan Desert, represent the historical and cultural
heritage of Ancient China and transactions between China and Arabian
countries on the well-known “Silk Road”.

However, the preservation of these historic murals presents significant
challenges due to the degradation caused by the materials’ inherent prop-
erties and the long-termeffects of environmental factors such as climate and
human-induced damage. As a result, many of these murals suffer from
issues like flaking, cracking, fading, and mildew. Traditional inpainting
techniques, although effective in some instances, require extensive historical
knowledge and specialized artistic skills, with a limited number of qualified
practitioners available1. Additionally, these methods are often time-con-
suming, labor-intensive, and carry the risk of secondary damage if not

executed with precision. Digital inpainting allows for the accurate recon-
struction of the murals’ original structure and appearance without physi-
cally intervening in the original artwork, thereby minimizing the potential
for further damage2. Moreover, digitization enables broader public access
and interaction, offering new ways for audiences to engage with and
appreciate these culturally significant works. This method not only ensures
the long-term preservation of the murals but also bridges the gap between
art and technology, fostering a deeper connection to cultural heritage.
Through digital preservation, these invaluable works are safeguarded while
also becoming accessible to a global audience, ensuring their continued
relevance and appreciation3.

Traditional mural image inpainting techniques can generally be cate-
gorized into twomain types: Content-based Inpainting and structure-based
inpainting4. Content-based inpainting techniques aim to restore the visual
content of a mural by replicating textures, colors, and patterns from the
surrounding undamaged areas5. The primary objective of this method is to
fill in missing or damaged sections while maintaining visual consistency,
ensuring that the restored regions blend harmoniously with the original
artwork. Content-based inpainting works well for murals with missing
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textures, colors, or patterns. One prominent content-based technique is
nonparametric sampling, introduced by Efros and Leung (1999). This
method synthesizes textures by directly copying pixels or blocks from a
reference image, rather than using parametric models. By learning and
replicating the texture patterns from surrounding areas, it effectively
reconstructsmissingportionsof an image, suchas amural6. Buildingon this,
exemplar-based inpainting fills damaged regions by sampling visually
similar patches fromneighboring intact areas. Criminisi et al. (2004) refined
this approach by integrating structural consistency, which not only con-
siders intensity similarity but also structural similarity between patches to
ensure that the restored regions maintain the original image’s overall
structure and coherence7. Structure-based inpainting techniques focus on
restoring the structural continuityof amural, utilizingmathematicalmodels
and algorithms to recover both its visual content and underlying geometric
structure, such as lines, shapes, and overall layout. These methods aim to
preserve the spatial integrity of the artwork, ensuring that both the content
and composition remain true to the original mural. One keymethod in this
category is the Fast Marching Method (FMM), proposed by Telea (2004),
which offers an effective approach for image inpainting. The core principle
of FMM is to initially process the pixels along the edges of the damaged area
and then propagate the inpainting inward in a layer-by-layer manner until
the entire region is filled. This technique is particularly effective for regions
with irregular boundaries, where maintaining structural coherence is
essential8. Another significant advancement is the work by Tschumperlé
and Deriche (2005), who developed a unified framework based on partial
differential equations (PDEs) for the regularization of vector-valued images.
This framework enables adaptive processing of local features through ani-
sotropic diffusion equations and locally interpreted regularization pro-
cesses. By applying these techniques, it is possible to restore both the
structural and textural continuity of an image, making it highly suitable for
tasks such as image denoising, enhancement, and inpainting. This approach
ensures that the geometric structure and fine details of the mural are pre-
served during the inpainting process9. Additionally, a texture synthesis
method has been proposed that incorporates a graph cut algorithm to
optimize the seamsduring the synthesis process.Unlike traditionalmethods
that rely on fixed-size patches, this technique matches patches within the
sample image and applies the graph cut algorithm to identify the optimal
seam paths. By minimizing visible seams, this approach results in a more
seamless and natural inpainting of the mural’s texture10. Traditional
inpainting methods continue to play a crucial role in mural conservation
due to the unique characteristics of murals. Scholars have proposed an
integrated approach that begins with the automatic selection of reference
mural images based on structural and texture similarity11. Depth features of
themurals are then extracted losslessly using a Reversible ResidualNetwork
(RRN). A channel refinement module follows, removing redundant infor-
mation from thenetwork channels. Finally, the colors of fadedmural images
are restored through an unbiased color transfer module, effectively reco-
vering the original hues of themural12. In summary, traditional digitalmural
image inpainting methods primarily focus on the localized details of the
mural image, aiming to restore specific damaged areas with attention to
surrounding context and visual coherence.

Traditional image inpainting techniques, such as exemplar-based and
structure-basedmethods, focus on fillingmissing regions by sampling from
surrounding areas13. While these approaches are effective in certain con-
texts, they often face challenges in maintaining high visual fidelity in more
complex scenarios14. The rise of deep learning has significantly transformed
the field of image inpainting, enabling more advanced methods capable of
learning intricate image features and global structures. Unlike traditional
techniques, deep learning models can capture semantic information
through end-to-end learning, allowing them to handle complex inpainting
tasks more effectively. This advancement has solidified deep learning as a
powerful tool for extracting both structural and semantic content from
images. Pathak et al. (2016) introduced Context Encoders, a deep learning-
based inpainting method using a CNN to predict missing image regions
based on surrounding context. The model employs an encoder-decoder

architecture with adversarial training, where a discriminator distinguishes
real from inpainted images, guiding the generator to produce high-quality
inpainting. While one of the first deep learning approaches for large-scale
inpainting, it is limited by its relianceon fully connected layers, restricting its
application to low-resolution images and fixed-shape missing areas15. To
overcome these limitations, Iizuka et al. proposed a context attention
module within a fully convolutional network (FCN), which enables the
model to better identify and match relevant patches from the surrounding
context, improving inpainting quality16. Building on this, Lian et al. devel-
oped a dual-feature encoder that combines both structural and texture
features. By using skip connections to guide the decoder and multi-scale
acceptance fields to enhance contextual and semantic consistency, this
method further refines inpainting performance17. Zimu Zeng et al. utilizing
convolutionalneuralnetworks, is effective in restoring small defacedareasof
murals; its effectiveness significantly diminishes when applied to larger
areas18.

Deep learning-based approaches have transformed mural inpainting
by enabling more sophisticated restoration. Unlike traditional methods,
deep learningmodels, such asContext Encoders andGenerativeAdversarial
Networks (GANs), can learn intricate image features and global structures,
handling complex inpainting tasks19. In GAN-based inpainting, the gen-
erator predicts the missing content, while the discriminator evaluates
whether the restored image is visually authentic by distinguishing it from
real images. Yeh et al. (2017) introduced the Contextual GAN, which
integrates a contextual discriminator to producemore contextually accurate
and visually coherent inpainting results, particularly for large missing
regions, such as those found in damagedmurals20. However, the reliance of
the local discriminator on fully connected layers restricts its ability to handle
only fixed-shaped missing regions, limiting its applicability to real-world
inpainting tasks. To overcome this limitation, Yu et al. introduced a mod-
ified discriminator that incorporates a contextual attention layer derived
from PatchGAN. This innovation allows the model to consider distant
feature blocks, improving the quality of the inpainting. Additionally, spec-
tral normalization was applied to each layer of the discriminator to stabilize
the GAN training process21,22. Despite these improvements, PatchGAN-
based models tend to overlook the regions that are common to both the
natural and restored parts of the image outside of themissing areas. This can
reduce the discriminator’s effectiveness, leading to suboptimal inpainting
results. Expanding on this, Xu et al. (2023) developed DC-CycleGAN, an
inpainting method combining Deformable Convolution (DCN), Efficient
Channel Attention Network (ECANet), Residual Network (ResNet), and
CycleGAN. This method was specifically designed to restore the faded and
damaged frescoes of theDunhuangMogaoCaves,whichhave suffered from
long-term weathering and vandalism23. Similarly, Hu et al. introduced
SGRGAN, a framework for restoring traditional Chinese landscape paint-
ings. By using sketch images as structural priors, SGRGAN reconstructs
both the structural and textural components of themissing regions through
a dual-stream encoder-decoder architecture24. Further innovations,
including Group-wise Multi-scale Self-Attention (GMSA), Encoder-
Decoder Feature Interaction (EDFI), and Local Feature Enhancement
Block (LFEB), have further enhanced the model’s ability to restore intricate
mural details. These advancements have significantly improved the quality
and effectiveness of mural inpainting, marking a clear advancement over
traditional inpaintingmethods25.GANs can be effective in restoringmissing
or damaged sections of murals, but several challenges remain. While the
generated content may appear visually convincing, it can sometimes
introduce inconsistencies, such as mismatched patterns or textures, that
deviate from the original murals. Furthermore, murals often contain intri-
cate details and culturally specific elements that are difficult for GANs to
accurately replicate26. Capturing and preserving these fine, contextually
significant elements during the inpainting process remains a significant
challenge for GAN-based approaches.

Both traditional inpainting techniques and GAN-based methods have
limitations when applied to mural image restoration, as these artworks
require a careful balance of both local and global features27. While digital
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image inpainting technologies offer advanced approaches for recovering
damaged or degraded images, they are not without their challenges. Many
algorithms focuson largervisual elements, oftenneglectingfinerdetails such
as brushstrokes, textures, and subtle shading changes. Others reconstruct
missing sections by relying on surrounding pixels or patterns, butmurals, as
unique expressions of human art, require inpainting methods that preserve
the integrity of these delicate detailswhile ensuring overall stylistic cohesion.

To address this issue, we propose a novel method for mural image
inpainting using AI technologies. Concretely, a Coordinate Attention
Aggregated Transformed Generative Adversarial Network (CAAT-GAN)
with a U-Net discriminator is used to generate digitalized images more
faithful to the original styles, which will provide support archeological
workers to restore the physical mural images in the caves. Our approach
consists of three key components: the Coordinate Attention Aggregated
Transformation Block (CAAT), the U-Net architecture-based dis-
criminator, and an adaptive discriminator enhancement mechanism. The
CAATmodule improves traditional convolution by incorporatingmultiple
dilation rates, enabling the network to capture long-range contextual
information from high-resolution images, which is essential for accurately
inferring missing regions in murals. The CA attention mechanism within
CAAT further enhances long-range reasoning, preserving spatial details for
coherent reconstruction. The U-Net discriminator generates both global
and local confidence levels for the generated image, addressing issues such as
pixel-level blurring and guiding the generator to produce more accurate
inpainting. Finally, the adaptive discriminator enhancement mechanism
expands the dataset, stabilizes training, and ensures the authenticity of the
generated images, minimizing the risk of artifacts. Together, these com-
ponents allow for highly accurate and visually faithful mural inpainting,
eliminating the need for post-processing.

Compared with the current literature, this paper represents a new
research track for ancientmural inpainting by using artificial intelligence. It
makes the following key contributions to the field of mural image
inpainting: (1) Adaptation of the CAAT, which improves traditional con-
volution by integrating multiple dilation rates to capture long-range con-
textual information, thereby enhancing the accuracy of mural image and
more conform to the main features of mural images. (2) A U-Net archi-
tecture-based discriminator is proposed, which generates both global and
local confidence levels for the generated image. This dual-level evaluation
effectively addresses pixel-level blurring andguides the generator toproduce
more precise and visually coherent inpainting. The implementation of an
adaptive discriminator enhancement mechanism, which expands the
dataset, stabilizes training, and ensures the authenticity of the generated
images,minimizing the introduction of artifacts. (3) The creation of a large-
scale mural dataset, DunHuang-Mural, consisting of 7983 digitalizedmural
images, specifically designed to support physical mural image inpainting,
detection, and validation tasks, thus offering a valuable resource for future
research.

The structure of the paper is as follows. Section “Methods” presents a
detailed explanation of the proposedmural image restorationmethod, with
a focus on the CAAT module and the U-discriminator. Section “Results”
demonstrates the effectiveness of the method through its application to
Dunhuang mural image inpainting and provides a comprehensive analysis
of the experimental results. Finally, Section “Discussion” summarizes the
key contributions of the work and outlines potential directions for future
research.

Methods
Mural image dataset construction
The constructionof comprehensivemural imagedatasets plays a crucial role
in the successful implementation of mural image inpainting28. These data-
sets provide the necessary data for training machine learning models,
enabling them to restore damaged murals by learning from the intact
portions of the images, including patterns, textures, and underlying struc-
tures. The importance of these datasets is magnified by the increasing use of
advanceddeep learning techniques,wherehigh-quality datasets are essential

to the successful development and validation of inpainting algorithms. Early
mural datasets typically containedmurals with simple degradation patterns
or represented only a few selections ofmural styles. This limitationmakes it
difficult to generalize inpainting algorithms across different regions and
styles of murals. In addition, early datasets lacked annotations to label
damaged areas, which is a key element in trainingmachine learningmodels
for tasks such as segmentation and inpainting29. This paucity of data restricts
the ability to conduct large-scale deep-learning training, which in turn
hampers the performance and generalization capabilities of inpainting
tasks. In the field of heritage science, as seen in other cultural heritage
preservation studies (such as those related to ancient paintings or sculp-
tures), a lack of sufficient data can lead to models that are unable to capture
the full range of characteristics and variations within the domain.

As deep learning techniques, particularly convolutional neural net-
works (CNNs) and Generative Adversarial Networks (GANs), gained
traction, researchers began developing more sophisticated datasets with
comprehensive annotations. These datasets are designed to assist in training
models for inpainting tasks, where the goal is to predict and restore missing
sections of damaged murals. A notable example is the Dunhuang Murals
Dataset, which contains images from the Mogao Caves in China. This
dataset includes both intact and damaged portions of the murals, and
provides masks of missing areas, allowing researchers to train models to
restore these regions effectively30. In recent years, researchers have created
more specialized datasets aimed at capturing specific features of murals,
such as textures, structural patterns, and geometric features. These datasets
are invaluable for training deep learning models designed to recover not
only missing pixels but also the fine-grained structural and artistic features
of the murals. For example, Xu et al. (2024) the developed a dataset for
Dunhuang mural named MuralDH which includes both intact and
degraded sections along with annotations detailing the murals’ structural
and texture features. This dataset comprises over 5000 high-resolution
images28. This dataset has been used to trainmodels that can restoremissing
regions while preserving the integrity of the original artwork, both in terms
of texture and structure.

Despite significant progress in the development of mural image
datasets, many existing collections remain limited in their diversity. This
limitation arises from the inherently finite number of murals, which span
various historical periods, geographic regions, artistic styles, and icono-
graphic traditions. As a result, current datasets often fail to represent the full
scope of mural diversity. To address these shortcomings, we propose a new
dataset, named DunHuang-Mural, designed to include a wide range of
samples from various periods, locations, and artistic styles. By offering a
more comprehensive collection, the DunHuang-Mural dataset aims to
provide a richer resource for developing and evaluating mural image
inpainting algorithms. Its diversity is expected to enhance the training and
performance of these models, making them more adaptable to different
inpainting contexts.

CAUGAN
The proposed mural image inpainting method, named CAUGAN, is
depicted in Fig. 1. This method comprises two main components. The first
component is the Coordinated Attention Aggregate Transformation Block
(CAAT), which captures rich contextual information from distant regions
within the images. This allows for a more realistic inpainting of missing
content inmural images.The secondcomponent is a discriminator basedon
the U-Net, which leverages its robust discriminative capabilities to encou-
rage the generator to produce more realistic inpainting content, enhancing
both visual quality and detail. This approach enhances both visual quality
and detail. Through these innovations, our model achieves significant
improvements in image inpainting quality.

Coordinate attention aggregated transformations block
To ensure structural coherence during image inpainting, it is crucial to
effectively infer missing information not only from the intact regions but
also from spatially distant areas of the image31,32. This allows for the
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preservation of both local and global patterns, ensuring that the restored
regions seamlessly integrate with the surrounding content. This challenge is
particularly evident inmural images, where varying scales, perspectives, and
intricate details require capturing a broad range of contextual patterns to
maintain the overall integrity of the artwork. The Coordinate Attention
Aggregated Transformations (CAAT) module proposed in this paper
tackles this issue by decomposing the standard convolution kernel into
multiple sub-kernels, each operating with different dilation rates. This
approach allows the model to capture contextual information at various
scales, enhancing its ability to infer missing regions accurately. This enables
the model to capture contextual information across multiple scales, com-
bining fine-grained details with broader context. The features extracted
from these varying receptive fields are then fused with the standard con-
volution outputs, ensuring a more comprehensive feature representation.
This process enhances the model’s ability to restore missing regions while
preserving structural and visual coherence.

As illustrated in Fig. 2(a), the conventional residual connection sums
the input feature x1 and the learned residual feature x2 without considering
spatial variation, which can result in color discrepancies in the image. To
address this, we propose amodification, as illustrated in Fig. 2(b), where we
integrate a Coordinate Attention (CA) mechanism into the gated residual
connections. This preserves spatial information and enables the network to
capture contextual details from distant regions, improving the accuracy of
inferences. Initially, we aggregate the input features along the vertical and
horizontal directions through two one-dimensional global pooling opera-
tions, generating direction-aware feature maps. These maps are then
encoded into two attention maps that capture long-range dependencies
along each spatial direction, effectively preserving location information.
Additionally, removing the sigmoid function reduces feature loss during
inpainting, enhancing the overall quality and coherence of the restored
image. The diagram of the Coordinate Attention (CA) block used in our
approach is shown in Fig. 2(b).

The attention maps are applied to the input feature map via multi-
plication, enhancing the representation of relevant regions. This process is

composedof two stages: coordinate information embedding and coordinate
attention generation. Coordinate information embedding decomposes the
global pooling operation into two one-dimensional feature encoding
operations to allow the attentionmodule to capturemore precise long-range
dependencies. For a given input X, each channel is encoded in coordinates
along the horizontal and vertical directions using the pooling kernel’s two
spatial ranges H; 1ð Þ and ð1;WÞ. Equation 1 demonstrates the decom-
position of the global pooling operation into two one-dimensional feature
encoding operations.

zc ¼
1

H ×W

XH
i¼1

XW
j¼1

xc i; j
� �

ð1Þ

Hence, the output of the c-th channelwith height h can be expressed as
Eq. 2:

zhc hð Þ ¼ 1
W

X
0≤ i <W

xc h; ið Þ ð2Þ

Similarly, the output of c-th channel with width w can be mathema-
tically formulated as Eq. 3:

zwc wð Þ ¼ 1
H

X
0≤ j <H

xc j;w
� �

ð3Þ

The two transformations generate direction-aware feature maps,
allowing the attention module to capture long-range dependencies in one
spatial direction while preserving positional information in the other, thus
improving localization accuracy.

To effectively utilize this embedded information, a second transfor-
mation, called coordinate attention generation, is introduced. This trans-
formation concatenates the outputs of the initial steps and applies a 1× 1

Fig. 1 | The framework of CAUGAN. Note: Fig. 1 shows the architecture of the
CAUGAN method for mural image inpainting. It consists of two main parts: the
generator and the discriminator. The generator is responsible for inpainting the
image. It includes convolution layers and Coordinated Attention Aggregate
Transformation (CAAT) blocks. The CAAT blocks allow the generator to capture
contextual information from distant areas of the image, helping it generate more
realistic inpainting. The input to the generator is damaged and masked image, and

the output is the inpainted image. The discriminator is based on the U-Net archi-
tecture and serves to evaluate the generated inpainted image. The discriminator
compares the inpainted image to the original image (ground truth) and decides
whether the generated content is “Real or Fake.”This adversarial process encourages
the generator to improve its inpainting quality. Together, these components work to
significantly enhance the visual quality and realism of the inpainted images by
refining both the generated content and the evaluation process.
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convolutional transformation function F1, as shown in Eq. 4:

f ¼ δ F1 zh; zw
� �� �� � ð4Þ

Here, f represents the feature-aware map in horizontal and vertical
directions, δ is a nonlinear activation function, F1 is the 1× 1 convolutional
transform function, and zh; zw

� �
indicates the spatial dimension of the

concatenation operation. The number of channels in Fh, and Fw is then
adjusted tomatch the number of channels in the input X by applying a 1× 1
convolutional transform, as shown in Eqs. 5 and 6:

gh ¼ σ Fh f h
� �� � ð5Þ

gw ¼ σ Fw f w
� �� � ð6Þ

Here, the function σ represents a Sigmoid function. Reducing the
number of channels in f can simplify model complexity and accelerate
training. However, this reduction may lead to the loss of essential feature
information, requiring careful consideration of the reduction ratio. Finally,
the representation of the output of the coordinated attention block is shown
in Eq. 7:

yc i; j
� � ¼ xc i; j

� �
× ghc ið Þ× gwc j

� � ð7Þ

The spatially varying gate value g is computed from x1 using standard
convolution andCA attentionmechanisms. Subsequently, the input feature
x1 and the learned residual feature x2 are weighted and summed with g to

obtain the final feature representation x3, as shown in Eq. 8:

x3 ¼ x1 × g þ x2 × ð1� gÞ ð8Þ

This approach of spatially varying feature aggregation updates the
features within themissing regionwhile preserving those in the intact areas.
By effectively capturing contextual information from distant regions, it
facilitates the accurate inpainting of the mural’s original content.

U-Net-based discriminator
To generate more realistic images, a is incorporated into the CAAT-GAN
training. This enhances the generator’s ability to produce high-resolution
images, reduces pixel blurring in large missing regions, and ensures clear
textures in the restored images33.

The discriminator is structured as a U-Net, with the original network
serving as the encoder and a new up sampling network as the decoder34,35.
This configuration a U-Net-based discriminator, allows the decoder to
provide spatially consistent feedback to the generator at the pixel level36. The
encoder and decoder are connected through bottleneck connections and
skip links. This enhanced architecture strengthens the discriminator,
making it more challenging for the generator to deceive it, thereby
encouraging the generator to improve the quality of the generated samples,
as shown in Fig. 3:

This enhanced discriminator, referred to as DU . differs from the ori-
ginal discriminator DðxÞ, by performing pixel-level classification, seg-
menting the image into real and fake regions rather than classifying the
entire image as either true or false. Additionally, the encoder part of DU ðxÞ

Fig. 2 |Architectural comparisonof the standard residual block and the enhanced
CAAT block in the CAUGAN method. a Standard Residual Block, b Improved
CAAT Block. Note: This figure presents an architectural comparison between the
Standard Residual Block and the Improved CAAT Block used in the CAUGAN
method. In (a), the standard residual block processes the input feature x1 through a
3 × 3 convolution and ReLU activation, then adds the result to the residual input x2.
While effective for general feature learning, this design lacks explicit spatial mod-
eling, which can result in inconsistencies, such as color or texture mismatches in
mural restoration. In contrast, b shows the CAAT Block, which introduces coor-
dinate attention mechanisms and a refined structure to enhance spatial awareness.
The convolution operation is divided into four sub-kernels with reduced output

channels (e.g., 64 channels per sub-kernel from an original 256-channel kernel).
Each sub-kernel applies a distinct dilation rate (1, 2, 4, and 8), expanding the
receptive field to capture both fine details and broader contextual information. This
multi-scale approach is essential for handling large or repetitive patterns often found
in mural backgrounds. The outputs from these sub-kernels are concatenated and
fused through an additional convolution, enabling the CAAT Block to integrate
multi-scale features effectively and model spatial hierarchies. This enhanced spatial
awareness helps preserve mural structure and detail, resulting in improved perfor-
mance during inpainting tasks. Overall, the CAAT block outperforms the standard
residual block by incorporating spatially-aware, multi-scale contextual learning,
making it highly suitable for complex tasks such as mural image restoration.
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retains the confidence level of the original image, enabling the discriminator
to independently learn and distinguish between global and local confidence.
The encoder anddecodermodules are defined asDU

enc andD
U
dec, respectively.

The learning objective of the discriminator is presented in Eq. 9:

LDU ¼ LDU
enc

þ LDU
dec

ð9Þ

Specifically, the loss of the encoder LDU
enc

is computed from the scalar
loss of DU

enc:

LDU
ec
¼ �Ex logDU

enc xð Þ� �� Ez log 1� DU
enc G zð Þð Þ� �� �

ð10Þ

The loss of the decoder, LDU
dec

is calculated as the average judgment
value of all pixels, as depicted in Eq. 11:

LDU
dc
¼ �Ex

X
i;j

log DU
dec xð Þ� �

i;j

" #
� Ez

X
i;j
log 1� DU

dec G zð Þð Þ� �
i;j

� �h i
ð11Þ

Here, DU
dec xð Þ� �

i;j and DU
dec G zð Þð Þ� �

i;j represent the discriminator’s
decisions at pixel ði; jÞ. The loss of the generator is described in Eq. 12:

LG ¼ �Ez logDU
enc G zð Þð Þ þ

X
i;j
log DU

dec G zð Þð Þ� �
i;j

h i
ð12Þ

Enhancements to the discriminator architecture have significantly
improved its ability to distinguish real from generated images. This
improvement compels the generator to focusmore on both global and local
structural details, leading to the production of sharper, more realistic tex-
tures in the generated images.

Loss functions
The proposed framework consists of four key loss components: adversarial
loss, reconstruction loss, perceptual loss, and style loss.

Adversarial loss. The enhanced adversarial loss is formulated as:

Ladv ¼ LDU ð13Þ
Here, LDU is computed through a pixel-wise weighted summation of

probability maps derived from the discriminator DU .

Reconstruction loss. To enforce pixel-level fidelity between the gen-
erated image x̂ and the ground-truth image the x; reconstruction loss
employs the L1 norm:

Lrec ¼ Ex;x̂�ðpdata;G ðzÞÞ½k x � x̂k1�

where G ðzÞ represents the generator output, and pdata is the real data
distribution.

Perceptual loss. To maintain semantic consistency between the gen-
erated and ground-truth images, the perceptual loss is computed based
on feature embeddings from a pre-trained VGGnetwork (e.g., VGG16 or
VGG19). The perceptual loss is defined as:

Lper ¼
X
i

k ϕiðxÞ � ϕiðx̂Þk1

whereϕið�Þ represents the featuremap extracted at the i-th layer of theVGG
network.

Style loss. To ensure the generated image matches the texture and style
of the ground-truth, the style loss compares the Gram matrices G of the
feature activations:

Lstyle ¼
X
i

k G ϕiðxÞ
� �� G ϕiðx̂Þ

� �k1
Here, Gð�Þ denotes the Gram matrix computation, which cap-

tures the correlations between feature channels. For a feature map
ϕiðxÞ of shape H ×W ×C, it is first reshaped into a matrix
ϕ0i 2 RC × ðH�WÞ. The Gram matrix is then computed as:

G ϕi
� � ¼ ϕ0i � ϕ0i

� �T
The resultingGðϕiÞ 2 RC ×C encodes the second-order statistics of the

feature maps, reflecting the style characteristics of the image.
The total loss function combines all the above components with

empirically tuned weights to balance their contributions:

Ltotal ¼ λadvLadv þ λrecLrec þ λperLper þ λstyleLstyle

The coefficients are set as ref. 37: λadv ¼ 0:1; λrec ¼
10; λper ¼ 0:1; λstyle ¼ 250.

Results
Datasets
In this paper, we introduce theDunHuang-Mural dataset, which consists of
7983 high-resolution images representing various types of murals. The
high-resolution mural images collected from three sources: the “Chinese

Fig. 3 | TheU-Net based discriminator architecture.Note: The figure illustrates the
architecture of the discriminator used in the CAUGANmethod, which is structured
as a U-Net. It is divided into two main parts: the encoder and the decoder. The
encoder processes the input image, starting with a 3 × 512 × 512 image and pro-
gressively downsampling it through a series of layers with decreasing spatial
dimensions. At each stage, the image is passed through convolutional layers, gra-
dually reducing its resolution while extracting increasingly abstract features. The
encoder is responsible for capturing the essential features of the input image. The
decoder, on the other hand, upsamples the feature maps produced by the encoder,
restoring the spatial resolution and refining the information extracted by the
encoder. The decoder outputs spatially consistent feedback to the generator, helping
it improve the quality of the inpainted image. The U-Net structure also includes
bottleneck connections and skip links, which allow the decoder to retain important
spatial information by directly connecting corresponding layers from the encoder to
the decoder. This architecture enhances the discriminator’s ability to evaluate the
generated inpainted images bymaintaining spatial consistency at the pixel level. As a
result, the generator faces a more robust challenge in trying to deceive the dis-
criminator, pushing it to generate higher-quality, more realistic images. The feed-
back from the discriminator helps refine the inpainting process, improving the
overall output.

https://doi.org/10.1038/s40494-025-01891-9 Article

npj Heritage Science |          (2025) 13:305 6

www.nature.com/npjheritagesci


DunhuangMurals Treasury” dataset (1382murals from variousDunhuang
caves), theDigitalDunhuangwebsite (filteredandhigh-quality images), and
search engines (via keywords like “ancientChinesemurals” and “Dunhuang
murals”). The images represent different historical periods, including
Northern Zhou, Sui, Tang Dynasties, and feature diverse subjects like
Bodhisattvas, Buddha images, and architecture. To ensure quality, damaged
murals were excluded, and images were cropped to sizes between 512 × 512
and 1200 × 1200 pixels before being resized uniformly to 512 × 512 using
Python’s PIL library.

The creation of this dataset was motivated by the need to address the
gap in suitable datasets formural inpainting research, particularly formural
image inpainting. To facilitate effective model training, the dataset was
divided into two subsets: a training set of 6386 images for feature learning
and a test set of 1597 images for evaluating model performance and
generalization.

To simulate real-world mural damage and introduce diverse deletion
patterns, we incorporated the NVIDIA Irregular Mask Dataset from Liu
et al.38 which contains 12,000 mask images in six size categories, each with
1000 border-constrained and 1000 border-unconstrained masks. By com-
bining thismask datasetwith theDunHuang-Mural images, we exposed the
network to a variety of deletion scenarios, enhancing its robustness in
handling different types of damage commonly found in authentic murals.
Figure 4 illustrates the original image and corresponding mask from our
dataset, demonstrating the inpainting process applied to the damaged
mural. The original image serves as the reference, while themask highlights
the regions with missing content, simulating real-world damage.

Evaluation indicator
PSNR19, SSIM39, and FID40 are well-establishedmetrics for evaluating image
quality. PSNR measures the peak signal-to-noise ratio, reflecting the accu-
racy of pixel-level reconstruction. SSIM assesses structural similarity,
focusing on luminance, contrast, and texture, which are crucial for visual
perception. FID, on the other hand, compares the distribution of generated
images to real images, capturing differences in feature space and offering

insights into the realismof the restored images. Byutilizing thesemetrics,we
ensure a thorough and objective evaluation of the inpainting quality
achieved by our model. Therefore, in this paper, we also employ these
metrics for the evaluation and comparison of our model’s performance.

Implementation details
The experiments were implemented using PyTorch41 and trained for 100
epochs with the Adam optimizer and a fixed learning rate of 0.0001 for
stable convergence. We initialized the model using a pretrained VGG16
network to leverage knowledge from a large-scale dataset. All images were
resized to 512 × 512 for consistency, in line with common practices in the
field. The experiments were performed on a single NVIDIA V100 GPU
(32 GB).

To improve themodel’s performance and generalization on real-world
data, we incorporate an adaptive data augmentation technique known as
ADA enhancement. This method applies a variety of transformations,
including 90° rotation, integer translation, geometric and color adjustments,
spatial filtering, additive noise, and cutout, with each transformation being
applied randomly based on an adaptive probability, p. The value of p is
adjusted during training according to themodel’s overfitting level, ensuring
a balance between sufficient augmentation and avoiding excessive ran-
domness. This approach enhances the model’s robustness by providing a
diverse set of training examples, enabling it to better generalize across awide
range of real-world data.

The networkmodel was implemented using the popular deep learning
framework PyTorch. The training process was configured to run for 100
epochs, with the Adam optimizer being utilized to update the model’s
parameters. A fixed learning rate of 0.0001 was maintained throughout the
training to ensure stable convergence. To initialize the model weights, a
pretrained model of VGG16 was employed, leveraging the knowledge
learned froma large—scale dataset. During both the training and evaluation
phases, all images were uniformly resized to 512 × 512 to maintain
consistency19,42,43. This standardization was in line with a set of commonly
used settings in the field, facilitating comparisons and reproducibility of the

Fig. 4 | Example of DunHuang-Mural dataset. a DunHuang-Mural images,
bMaked Image. Note: The figure shows an example from the DunHuang-Mural
dataset. The Dunhuang-Mural dataset was developed from a publicly available
Kaggle dataset, accessible via the following link: https://www.kaggle.com/jacobok/
datasets and https://www.kaggle.com/datasets/xuhangc/dunhuang-grottoes-
painting-dataset-and-benchmark. Through systematic preprocessing using Python,
7983 high-resolution images were generated. This dataset, referred to as the
Dunhuang-Mural dataset, provides a critical resource for tasks such as mural image
inpainting, damage detection, and validation in the field of digital heritage pre-
servation. In (a) DunHuang-Mural images we have the original DunHuang-Mural

images. These are pieces of artwork that include intricate details and colors,
showcasing the rich cultural heritage of the Dunhuang murals. The images depict
scenes with various figures and elements, such as a seated figure and architectural
elements. In (b)Maked Image, the irregularmasked images are shown. Thesemasks
are applied to the original images, simulating regions that are missing or damaged.
The white areas in themask represent the regions that are missing content and need
to be inpainted or restored. The mask highlights the gaps in the images that the
inpainting method, such as CAUGAN, will focus on filling to generate a complete
and realistic image.
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results.All experimentswere executedona singleNVidiaV100GPU(32G),
which provided the necessary computational power to handle the complex
computations involved in training and evaluating the model.

To address the challenges of model overfitting and enhance its gen-
eralization ability on real—world data, we adopted an adaptive data aug-
mentation technique known as ADA augmentation44. This technique
introduced a stochastic element to the training process by randomly
selecting from a variety of augmentation operations. These operations
encompassed pixel manipulations such as horizontal flipping (x—flip), 90°
rotations, and integer translations, which can help the model learn invar-
iances to these common geometric transformations. Geometric transfor-
mations, color transformations, spatial filtering, additive noise45, and
cutout46 were also included in the augmentation repertoire. Each of these
augmentations was applied to the image with a certain probability p, while
with a probability of 1-p, the augmentation was skipped. Crucially, the
probability pwas adaptive,meaning it could be adjusted based on the degree
of overfitting exhibited by the model during training. This adaptive
mechanism allowed the model to receive a diverse set of training examples,
thereby improving its robustness and better adapting to the characteristics
of different real-world datasets.

Qualitative evaluation results
To evaluate the inpainting quality of the murals, we conducted image
inpainting experiments and compared our results with those of other
models. Figure 5 presents the inpainting outcomes achieved by our pro-
posed CAUGAN model.

As demonstrated in Fig. 5(c), the model effectively restores missing
regions of the mural images, demonstrating its capability to recover both
fine details and large-scale structures. The restored images exhibit improved
texture and color consistency, which is crucial for preserving the visual

integrity of the original artwork. The model successfully handles various
types of damage, includingmissing chunks and irregular gaps, ensuring that
the restored regions seamlessly integrate with the surrounding content.
These results highlight the effectiveness of our approach in addressing real-
world challenges in mural inpainting.

To evaluate the performance of our proposedmethod, we conducted a
comparative study with several state-of-the-art models, including PConv,
GatedConv, and PDGAN. For a fair comparison, we used publicly available
implementations of these models and ensured that all experiments were
performed under identical conditions, specifically using the same masks.
The results, as shown in Fig. 6, highlight significant differences in the
inpainting capabilities of the models. PConv38 often produced unrealistic
content in the missing regions, indicating a lack of precise inpainting in
certain areas. GatedConv29 struggled with larger, irregular holes, leading to
subpar inpainting results. Although PDGAN47 yielded relatively reasonable
inpainting, it consistently generated noticeable artifacts, which impacted the
visual quality of the output. In contrast, ourmethod demonstrated superior
performance, delivering more seamless and natural inpainting with better
preservation of the overall image context and finer details. The restored
image using our restoration method is compared with the original ima-
ge(ground truth), and the restoration is better than other models. These
findings emphasize the effectiveness of our approach in addressing the
challenges of mural image inpainting.

Quantitative evaluation results
In thequantitative evaluation,we categorized the irregularmaskdataset into
four size ranges: 1–10%, 10–20%, 20–30%, 30–40%, and 40–50%, to assess
inpaintingperformanceunder different levels of damage.Using a set of 1597
mural images, we compared the performance of our model against existing
methods.

Fig. 5 | Image inpainting results using
CAUGAN model. Note: This 3 × 3 grid illustrates
the systematic workflow for mural inpainting. Each
row displays three stages of the samemural segment:
a Original Image—the mural with natural degra-
dation and damage, bMasked Image—regions with
structural defects highlighted by white overlays, and
c Our Results–the inpainting outcomes generated
using the CAUGAN model.
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The results, as shown in Table 1, highlight the superior performance of
ourmodel compared to state-of-the-artmethods acrossmultiple evaluation
metrics.

As presented in Table 1, the results demonstrate the superiority of our
proposed model over existing state-of-the-art methods across multiple eva-
luation metrics. Specifically, in terms of PSNR, a widely used metric for
assessing image quality, our model showed exceptional performance in
preserving fine pixel-level details. It achieved a higher PSNR compared to
other methods, indicating that the inpainted regions are more similar to the
original, undamaged image content, with minimal distortion and loss of
information.

The SSIM results further highlighted the effectiveness of our approach.
SSIM, which considers both pixel values and structural information such as
edges and textures, showed that our model was highly successful in main-
taining the overall image structure. It produced colorized images withmore

coherent and consistent structures, thereby enhancing the visual plausibility
of the inpainted regions.

In addition toPSNRandSSIM,wealso evaluated theperceptual quality
of the inpainted images using the Frechet Inception Distance (FID) metric.
FID is known for its alignmentwith human visual judgment, and the results
revealed that the images generated by our model were of high quality,
approaching human-level perception. This suggests that ourmodel not only
produces visually appealing inpainted results but also captures the under-
lying characteristics and distribution of natural images, making the gener-
ated images more perceptually realistic.

In conclusion, the quantitative evaluation results clearly demonstrate
that our proposed model outperforms current state-of-the-art methods in
mural image inpainting. By excelling in multiple key metrics, our model
proves to be highly effective in restoring missing image content while pre-
serving both visual quality and structural integrity.

Fig. 6 | Qualitative comparison with state-of-the-art methods. We have high-
lighted and enlarged specific details next to each image with a red box. aMasked,
(b) PConv, (c) GatedConv, (d) PDGAN, (e) Ours, (f) Ground Truth. Note: This
figure compares the inpainting performance of different models for mural
restoration. a shows the original image with missing sections due to natural
degradation. b through (f) display the inpainting results of various models, with
each panel presenting the inpainting of the same damaged region. b illustrates the
result from PConv, which often produces unrealistic content in the missing areas,
showing a lack of precise inpainting in certain regions. GatedConv (c) struggles

with larger, irregular holes, leading to suboptimal inpainting results. While
PDGAN (d) generates relatively reasonable inpainting, it consistently produces
noticeable artifacts that degrade the visual quality of the restoration. In contrast,
(e) shows the inpainting results from our method, which provides a significantly
better output. The inpainted regions are more seamless, natural, and contextually
consistent with the surrounding details. f compares the output from our method
with the original (ground truth), clearly demonstrating that our approach out-
performs the others in terms of quality and detail preservation.
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Ablation study
To investigate the impact of each component on model performance, we
conducted two sets of ablation experiments using 30%-40% masks. These
experiments were designed to evaluate the contributions of the CAAT
module and the U-Net-based discriminator to the overall performance. To

assess the impact of the CAAT module, we removed the CA attention
mechanism from the residual connections, keeping all other parameters
unchanged. This modified network was trained using the same protocol on
ourmural imagedataset. Similarly,we assessed the effectiveness of theU-Net
discriminator by comparing it with the original four-layer discriminator.

The quantitative results from these ablation tests are presented in
Table 2, providing a clear comparison of themodel’s performance with and
without these components.

As demonstrated in Table 2, the results indicate that incorporating the
CAAT module significantly improves the model’s performance across all
levels of damage. Specifically, removing the CAAT module resulted in a
decrease of 0.280 in PSNR, a reduction of 0.008 in SSIM, and an increase of
1.61 in FID. These findings emphasize the crucial role of the CAATmodule
in enhancing the model’s ability to capture contextual information, leading
to more accurate and faithful inpainting of image structure and texture.
Furthermore, the model with the U-Net-based discriminator consistently
outperforms the one using the original discriminator architecture. Incor-
porating theU-Net-based discriminator improved PSNRby 0.503, SSIMby
0.015, and reduced FID by 0.89. These results highlight the effectiveness of
the U-Net-based discriminator in extracting richer structural details, as
evidenced by the significant improvement in SSIM. Additionally, themodel
demonstrated a stronger ability to capture finer pixel-level information, as
reflected in the higher PSNR scores. These findings suggest that the U-Net-
based discriminator is better suited to handle the complex and nuanced
characteristics of the images, enabling the generator to produce more
accurate and visually coherent inpainting results.

Model versatility test
Toevaluate the reliability andversatility of theproposedmodel, additional
mural images were selected for inpainting. Specifically, digital images of
murals from Shanxi were chosen due to their similarity to the Dunhuang
murals. Both regions of them are characterized by murals located within
temples, sharing religious themes and spanning multiple Chinese
dynasties with a long historical legacy. Additionally, these murals exhibit
similar stylistic features, including comparable line work and color
schemes. For the test, mural images from the Song Dynasty Kaihua
Temple in Gaoping City, Jincheng, Shanxi, and the Yuan Dynasty
Qinglong Temple in Jishan County, Yuncheng, Shanxi, were selected as
the image sources for the validation dataset. The image inpainting results
are presented in Fig. 7.

Table 1 | Quantitative comparison with the state-of-the-art
models

Mertics Mask PConv GC PDGan Ours

PSNR↑ 1–10% 31.417 31.941 32.143 33.458

10–20% 28.836 29.338 29.652 30.974

20–30% 25.647 26.181 26.393 27.238

30–40% 23.465 24.408 23.581 25.019

40–50% 21.319 21.873 21.341 22.894

SSIM↑ 1–10% 0.936 0.942 0.947 0.954

10–20% 0.912 0.922 0.924 0.935

20–30% 0.873 0.888 0.874 0.897

30–40% 0.813 0.833 0.818 0.839

40–50% 0.701 0.714 0.717 0.742

FID↓ 1–10% 6.42 5.71 5.87 4.67

10–20% 8.21 6.86 6.42 5.69

20–30% 11.74 10.53 13.03 7.08

30–40% 18.85 16.45 15.83 11.28

40–50% 24.93 23.04 23.95 16.83

Note:’↓’ means lower is better,’↑’ means higher is better.

Table 2 | The results of the ablation study

Model PSNR↑ SSIM↑ FID↓

CAUGAN 25.019 0.839 11.28

Without CAAT block 24.739 0.831 12.89

Without U-Net-based Discrimination 24.516 0.824 12.17

Fig. 7 | Inpainting of a Shanxi mural using the
CAUGAN model. Note: This figure illustrates the
inpainting process of a damaged Shanxi mural. The
image data, originally obtained from page 29 of
Volume 1 and page 7 of Volume 2 of the Shanxi
Ancient Mural Masterpieces Collection, published
by the Shanxi Economy Publishing House in 2016,
has been digitized for subsequent analysis and
research. a presents the Original Image, showing the
mural with visible degradation and missing sections
due to natural wear. b displays the Masked Image,
where the damaged regions are highlighted and
masked to prepare for restoration. c shows the
Restored Result, where the inpainting has been
successfully applied. As seen in (c), the damaged
areas in the original Shanxi mural have been effec-
tively reconstructed, demonstrating the CAUGAN
model’s strong stability and effectiveness in restor-
ing mural artwork. This process highlights the
model’s ability to recover fine details and maintain
visual coherence in complexmural restoration tasks.
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Figure 7 illustrates the inpaintingprocess: Fig. 7(a) showing theoriginal
mural, Fig. 7(b) displaying the masked image, and Fig. 7(c) presenting the
restored result. As observed in Fig. 7(c), the damaged areas in the original
mural have been effectively repaired. This demonstrates that the CAUGAN
model exhibits strong stability in the image inpainting task.

Disscussion
In this study, we propose an image inpainting model with CAAT block
and U-Net-based discriminator for restoring ancient mural paintings
image. The model enhances traditional GANs by leveraging the CAAT
block, which captures more information for improved image generation,
and by utilizing a U-Net-based discriminator to guide the generator in
producing more realistic fresco inpainting. Due to the scarcity of publicly
available datasets, we created the DunHuang-Mural dataset, comprising
7983 high-resolution images. Focused on the Dunhuang murals, this
dataset serves as a valuable resource for advancing research in mural
inpainting and preservation, offering significant potential for furthering
studies in this field.

To evaluate the effectiveness of our proposed model, we conducted a
series of inpainting experiments on damaged mural images. The results
demonstrate that the CAUGAN model outperforms several widely used
models, including PConv, GatedConv, and PDGAN, in terms of key per-
formance metrics such as PSNR, SSIM, and FID. This enhanced perfor-
mance can be attributed to the integration of two key components: the
CAAT module and the U-Net-based discriminator. The CAAT module
enhances the inpainting process by preserving positional and spatial
information, enabling the model to restore distant regions more accurately.
This results in restored content that is both realistic and contextually
coherent, significantly enhancing the quality of the restored mural images.
Meanwhile, the U-Net-based discriminator contributes to improved image
quality by performing both global and local assessments of image authen-
ticity. This dual-level evaluation mechanism helps to reduce pixel-level
blurriness and enhances the visual coherence of the restored regions.
Together, these components enable the generation of more accurate,
detailed, and visually appealing mural inpainting.

In addition to its effectiveness on the DunHuang-Mural dataset, the
model also demonstrated excellent inpainting results whenapplied tomural
images fromShanxi temples, further validating its versatility and robustness.
These results highlight the potential of the CAUGAN model for broader
applications inmural inpainting and cultural heritage preservation, offering
a powerful tool for the inpainting of diverse types of mural artworks.

Despite the strong performance of our model, it has some limitations,
particularly when dealing with large and complex missing regions in mural
images. Murals often contain intricate patterns and symbolic elements,
which can be difficult for themodel to accurately capture, especially in areas
with significant damage. This may lead to less precise inpainting in regions
with significant missing content. To address this, future work should focus
on improving themodel’s ability to handle large-scale damage and enhance
its contextual understanding for more accurate and coherent inpainting.

Data availability
No datasets were generated or analysed during the current study.
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