
npj | heritage science Article

https://doi.org/10.1038/s40494-025-02016-y

A point cloud simplification method using
clustering and saliency for cultural
heritage reconstruction
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With the rapid development of 3D scanning technologies, high-density point clouds of cultural
heritage artifacts such as stone carvings, statues pose significant challenges in storage, processing,
and accurate reconstruction. This paper proposes a point cloud simplification method tailored for
cultural heritage applications, combining clustering and saliency analysis to preserve intricate surface
details critical for archaeological studies. By segmenting point clouds into clusters with normal vector
constraints and evaluating saliency through roughness and curvature metrics, our method adaptively
retains primary features including engraved patternsweathered textureswhile simplifying non-feature
regions. Experiments on stone carvings from the Northern Song Imperial Mausoleum, Terracotta
Warriors, and Stanford datasets demonstrate that the algorithm effectively avoids mesh holes and
maintains geometric fidelity, enabling efficient 3D reconstruction for heritage conservation. This work
bridges advanced point cloud processing with practical archaeological needs, offering a robust tool
for digitizing and analyzing cultural relics with minimal loss of historically significant details.

Cultural heritage serves as a vital witness to human civilization, and
its digital preservation1 and reconstruction have emerged as a central
focus in archaeology, cultural heritage conservation, and digital
humanities2. Three-dimensional (3D) scanning technologies3, such as
laser scanning and photogrammetry4, provide non-contact, high-
fidelity digital archiving solutions for cultural relics through high-
precision point cloud data5. However, while high-density point
clouds capture intricate surface details of artifacts6—such as stone
carving patterns, textures of terracotta warrior armor, and bronze
inscriptions—they also introduce challenges like storage redundancy
and computational inefficiency. For instance, the point cloud of a
stone-carved artifact can reach tens of millions of points, leading to
time-consuming 3D reconstruction processes and potential masking
of critical historical information by redundant data7. Traditional
point cloud simplification methods (e.g., uniform sampling, curva-
ture filtering) effectively reduce data volume but struggle to balance
the trade-off between simplification rate and detail preservation.
Uniform sampling8 indiscriminately removes points regardless of
local geometric significance, often eroding fine-grained features in
complex regions. Curvature-based9 approaches tend to oversimplify
planar areas and generate holes in low-saliency regions due to abrupt

sampling density changes. Such over-simplification risks eroding
archaeologically critical features like weathering traces and engraved
boundaries, thereby compromising artifact authenticity and research
credibility.

Point cloud simplification is a crucial preprocessing step in 3D
reconstruction, particularly for cultural heritage artifacts10. Existing point
cloud simplification methods can be broadly categorized into four groups:
mesh-based, clustering-based, point-based, and deep learning-based
approaches.

Common approaches include the uniform mesh method11, which
employs a uniform grid (i.e., equidistant spatial partitioning) to down-
sample points while maintaining structural regularity. Octree down-
sampling hierarchically partitions space into voxels of varying resolutions.
Herraez et al. 12 performed a two-stage simplification of the point cloud
within the grid. In addition, Lv et al. 13,14 introduced the Approximate
Intrinsic Voxel Structure (AIVS), a method that preserves geometric fea-
tures by approximating the intrinsic geometric properties of surfaces. Their
two-stage framework first performs intrinsic resampling to retain
curvature-aware features, followed by isotropic resampling to ensure uni-
form point distribution. However, voxel-based methods often neglect fine-
grained geometric details critical for cultural relics. In contrast, polygonal
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mesh-based simplification15 methods simplify the original point cloud by
constructing polygonal meshes and removing redundantmeshes according
to certain rules to achieve simplification, but themesh generation process is
very time consuming16.

Clustering-based methods partition the point cloud into groups of
similar points17, from which representative points are selected. Shi et al. 18

utilized the maximum deviation of normal vectors to segment the point
cloud into subclusters. Sachdeva et al. 19 employed the k-means algorithm to
partition the point cloud and used entropy values to identify and remove
low-information clusters. Yanget al. 20 enhanced clustering-based approa-
ches by optimizing fuzzy c-means (FCM) algorithms using a gravity search
strategy.While these methods can retain significant structural information,
their performance heavily depends on the initial cluster center selection,
making them susceptible to noise and local feature loss.

Point-based approaches directly evaluate and retain pointswith higher
importance based on geometric properties. Ji et al. 21 and Chen et al. 22

applied multiple geometric operators to assess point significance, while
Xuan et al. 23 proposed a method based on local entropy of normal angles.
Zhang et al. 24 introduced a simplification entropymeasure to prioritize key
points based on geometric features. Although point-basedmethods provide
fine-grained control over simplification, they often struggle to maintain a
balance between data reduction and feature preservation. In cases involving
highly detailed cultural relics, these methods may inadvertently discard
subtle but important surface details, compromising the accuracy of sub-
sequent reconstructions.

Recent advances in deep learning have led to the development of
data-driven point cloud simplification techniques. Nezhadarya et al. 25

introduced a hierarchical sampling framework using critical points
extracted from a max-pooling operation. Lang et al. 26 proposed
Samplenet, which generates reduced point clouds by learning a sam-
pling matrix through feature-aware modules. Yuanqi et al. 27 further
refined this approach with Pcs-net, which optimizes sampling through
a feature-preserving mechanism. While deep learning-based methods
demonstrate impressive performance on small datasets, they face
challenges in scalability and generalization when applied to large,
detail-rich point clouds, such as those of cultural heritage artifacts.
Additionally, the lack of large-scale annotated datasets limits their
practical applicability.

Although the above methods have achieved good results for some
point cloud models, problems such as low accuracy, loss of information,
high complexity of the algorithm, and high time cost may occur when
dealing with large data volumes and detail-rich models. For example, when
simplifying point clouds of highly detailed stone carvings, traditional point
cloud simplification algorithms may significantly lose important features.
While Arav et al. 28 proposed a saliencymeasure for natural scenes based on
center-surround contrast, their method lacks explicit clustering to isolate
structural features. To address these challenges, this paper proposes a novel
point cloud simplification algorithm that combines clustering and saliency
analysis. By integrating Euclidean clustering with normal vector constraints
and utilizing roughness and curvature metrics for saliency evaluation, our
approach preserves critical surface details while reducing computational
complexity. Thismethod is specifically tailored for the 3D reconstruction of
cultural heritage artifacts, ensuring the retention of historically significant
features while improving processing efficiency.

This paper presents a novel point cloud simplification algorithm based
on clustering and saliency, which we abbreviate as CSS, aiming to balance
data reduction and detail preservation in 3D reconstruction of cultural
Heritage. The main contributions of this work include:
(1) The introduction of a new point cloud simplification algorithm that

can retain detailed features on complex models.
(2) By combining adaptive region partitioning with hierarchical voxel

sampling, the algorithm ensures the uniformity of local regions while
maintaining essential surface details.

(3) Experimental results show the effectiveness of the proposed algorithm
on point clouds acquired from different sensors and on point cloud

models with complex details, such as stone carvings and public point
cloud datasets.

The remaining sections of this paper are organized as follows: Section
“Methods”, we introduce the proposed method and provide a detailed
explanation of the specific principles underlying each process. Section
“Result” presents in detail the experimental data used in this paper, the
experimental results, and a comparative analysis of other methods. In
addition, the advantages and limitations of the algorithm are discussed.
Finally, in Section “Discussion”, we summarize the features of the proposed
method and provide an outlook for future work.

Methods
In this section, we will systematically present our proposed method, and its
flowchart is shown in Fig. 1. The process mainly includes five parts: The
proposed method comprises five core stages (Fig. 1): Initial Simpli-
fication: Voxel downsampling to reduce computational load; Saliency
Calculation: Joint roughness-curvature metric for feature importance;
Point cloud clustering, Adaptive thresholding: Cluster-wise saliency
thresholding for feature classification; Hierarchical Simplification:
Region-specific voxel sampling.

Point cloud initial simplification
Cultural heritage scan point clouds often contain tens of millions or even
hundreds of millions of points. Directly performing subsequent clustering
segmentation, and saliency calculation on such high-density data will bring
huge burdens in storage and calculation. Initial voxel downsampling can
remove more redundant points, significantly reduce the number of points,
and improve the running speed and memory utilization of subsequent
algorithms (suchasnormal estimation andKNNsearch)without repeatedly
calculating highly similar neighborhood information. Herráez et al. 12 also
use voxel downsampling to reduce the number of points, and then perform
secondary simplification on this basis. The voxel sizewe chose is in the range
of 1–2mm, while the width of the texture inscriptions of stone carvings is
usually more than a few millimeters. Therefore, downsampling mainly
removes redundant pointswithin nearly overlapping or small distances, and
does not destroy the overall outline and key features. In the subsequent
normal normal clustering and saliency evaluation, the detailed point cloud
can still be accurately identified and retained. With this approach allows us
to overcome the difficulties of handling large and complex datasets and
facilitate subsequent data analysis.

Saliency calculation
In this paper, the saliency value of each point is calculated by combining two
characteristic parameters, roughness and surface curvature, to reflect its
importance.

Roughness, defined as the Euclidean distance between a point and its
locally fitted plane, is critical for preserving fine surface irregularities in
cultural relics. For example, weathered textures or engraved boundaries
exhibit high roughness due to abrupt elevation changes. Combined with
curvature, which highlights broader geometric transitions, roughness
ensures a holistic representation of both micro- and macro-features.

Roughness Calculation: In this paper, roughness is defined as the
distance between each point pi and the best-fit plane of its nearest neighbor
and recorded asRs. As shown in Fig. 2, a spherical neighborhood of radius r
with the point as its center is created and then the equation of a best-fit plane
is calculated for the neighborhood of the point. The distance between the
point and the plane is then determined using the plane equation, and this
value is taken as the roughness of the point. The specific steps are as follows:
(1) Create a sphere neighborhoodof radius r andpoint pi as center anduse

kd-tree object to find the index and distance of the points in the
neighborhood.

(2) Judge the number of points in the neighborhood; if the number of
points in the neighborhood is less than 3, the point is skipped.
Otherwise, proceed to step 3.
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(3) Calculate the center of mass pc of the point cloud data in the neigh-
borhood of the point pi; where k is the number of points in the point’s
neighborhood, xi, yi, zi are the coordinates of the point.

(4) Use Eq. (1) to compute the covariance matrix of the neighboring
points. Then, apply eigen decomposition as shown in Eq. (2) to obtain
the eigenvalues and eigenvectors.The eigenvector corresponding to the
smallest eigenvalue indicates the normal direction of the best-fit plane.
Using this normal vector and the centroid of the neighborhood, the
coefficients of the local fitted plane equation (Eq. (3)) can
be determined, where the eigenvector defines the normal vector (a,
b, c) and the constant term d is computed using the dot product of the
normal vector and the centroid.

M ¼ 1
k

Xk
i¼1

pi � pc
� �

pi � pc
� �T ð1Þ

M � ~Vj ¼ λj � ~Vj; j 2 0; 1; 2 ð2Þ

aX þ bY þ cZ þ d ¼ 0 ð3Þ

Fig. 1 | Flow chart of the algorithm in this paper.

Fig. 2 | The roughness of point is calculated as the Euclidean distance between the
red point and the blue-fitted surfaces.
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(5) Finally, the roughness Rs at this point is calculated using Eq. (4):

Rsi ¼
axi þ byi þ czi þ d
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p ð4Þ

Point cloud curvature is a property that describes the local geometry of
each point in the point cloud and can be used to describe the degree of local
curvature variation around each point in the point cloud. Curvature varies
less in flat or smooth surface regions andmore in irregularities, depressions,
boundaries, vertices, etc29. As shown in Fig. 3, curvature is often used as a
metric to evaluate the importance of each point when simplifying the point
cloud to better preserve the geometric features and structure of the original
point cloud30. However, directly using curvature to simplify point clouds
often leads to data holes in regions with low curvature. Therefore, in this
work, curvature is used as an important parameter for calculating the sal-
iency of each point.

The surface curvature is calculated as follows: first, the covariance
matrix is constructed from Eq. (1), and then perform eigenvalue decom-
position on the covariancematrixM in formula (2) to obtain the eigenvalues
of M. If the eigenvalues satisfy λ0 ≤ λ1 ≤ λ2, then the surface curvature of
point is:

Ci ¼
λ0

λ0 þ λ1 þ λ2
ð5Þ

Saliency value calculation: This paper uses roughness and curvature to
comprehensively calculate the significance value of each point. In order to
avoid the influence of dimension on the significance value of each point, the
two calculated characteristic parameters are standardized. This article uses
Eqs. (6) and (7) to dimensionless the two characteristic parameters andmap
their values to[0-1].

R�
i ¼

Ri � Rmin

Rmax � Rmim
ð6Þ

C�
i ¼

Ci � Cmin

Cmax � Cmim
ð7Þ

Where R�
i and C

�
i are the standardized roughness and curvature, Ri and Ci

are the unstandardized roughness and curvature,Rmax andCmax correspond
to the maximum roughness value and curvature value, respectively, and
Rmin and Cmin are the corresponding minimum values.

Finally, the saliency value of each point is calculated based on the
normalized roughness and surface curvature, and the saliency value of each

point is defined as Eq.(8).

Si ¼ aR�
i þ bC�

i ð8Þ

Where a, b are the weight adjustment coefficients and aþ b ¼ 1.

Point cloud clustering
For an object, there are significant differences in the complexity of the
different parts, so a direct simplification of the whole point cloud can easily
lead to the loss of a many critical features. To overcome this problem, this
study uses the clustermethod todivide the original point cloud intomultiple
clusters.

Euclidean clustering31 of point clouds is a commonly used method for
segmenting point clouds, primarily dividing them into different clusters by
calculating the Euclidean distance between points. However, in some cases,
solely relying on Euclidean distance may not accurately segment the point
cloud. Euclidean clustering based on constraints of normal vector angles
adds considerations for point cloud normal vectors on top of traditional
Euclidean clustering, aiming to better distinguish points with different
normal vector directions.

Normal vector angle constraint32 is a similarity measurement method
based on the direction of normal vectors. To determine whether two
neighboring points belong to the same planar or structural cluster, we
compute the angle between their respective normal vectors. Specifically, for
a point p and a neighboring point q, their normal ~np and ~nq are both
estimated using the same neighborhood parameters (radius r) via PCA. The
angle θ between~np and~nq is calculated as Eq. (9). A smallerθ angle indicates
higher similarity, implying p and q lie on the same local surface or cluster.

θ ¼
~np ×~nq
~np �~nq

ð9Þ

Figure 4 shows the flowchart of Euclidean clustering based on normal
vector angle constraints. Specifically, for a point P in space, its k-nearest
neighbors are searched, and the angle between the normal vectors of this
point and the point within its neighborhood is calculated. If the angle is
smaller than a threshold, the point is clustered into the set Q. If the number
of points in Q no longer increases, the entire clustering process ends;
otherwise, points other than P need to be selected from set Q, and the
process is repeated until the number of points in Q no longer increases.

Adaptive threshold setting and region division
The feature region mainly contains detailed characteristics of objects,
encompassing complex geometric designs, while the non-feature region
primarily consists of the planar parts of objects. The above process segments
the original point cloud intomultiple point cloud clusters. To determine the
feature and non-feature regions of each point cloud cluster, the average
saliency value of each point cloud cluster is calculated and used as the
threshold for partitioning the region of that point cloud cluster.

Fig. 3 | Local curvature of point cloud data.

Fig. 4 | Euclidean clustering process with normal vector angle constraint.
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If a single threshold is set for the entire point cloud, some feature points
will inevitably be classified into non-feature regions. In this work, the
strategy described above can adaptively set different thresholds for different
parts of the point cloud,making the distinction between feature regions and
non-feature regions more effective and effectively avoiding the division of
feature points into non-feature regions.

Although each point cloud cluster can be divided into feature and non-
feature regions based on their average saliency values, considering that the
point clouds of stone-carved cultural relics are obtained through high-
precision scanning, with very high point cloud density, after region parti-
tioning, the feature region may still contain a large number of points.
Therefore, to further subdivide the feature region, we calculate the average
significance value of the divided feature region again. Points with sig-
nificance values higher than this value are divided into primary feature
regions, and points with significance values lower than this value but higher
than the original cluster mean are divided into secondary feature regions.
This two-level adaptive threshold strategy allows our algorithm to flexibly
deal with cultural relic point clouds with high-density fine structures, while
avoiding the misjudgment problem that may be caused by using a fixed
threshold over a large range. In this way, each point cloud cluster is sub-
divided into primary feature regions, secondary feature regions, and non-
feature regions. Figure 5 shows the result of partitioning one of the point
cloud clusters.

Hierarchical simplification
The core idea of the region partitioning simplification strategy is to
streamline the primary feature regions, secondary feature regions, and non-
feature regions obtained from the above process. In this process, it is
essential to ensure the uniformity of point clouds in the simplified results
locally to ensure better model reconstruction outcomes.

By adopting a voxel downsampling scheme, potential hole issues in the
point cloud can effectively be avoided. Specifically, different voxel sizes are
set for each region to control the sampling quantity. Three different voxels
are set for sampling in the primary feature region, secondary feature region,
and non-feature region, respectively. Finally, the sampling results from the
three regions aremerged toobtain the simplifiedpoint cloud. Figure 6 shows
the partitioning and simplification results of a point cloud cluster,
demonstrating a significant improvement achieved by the region

partitioning simplification strategy. It is evident that while retaining the
main feature points, the point cloud data volume has been effectively
reduced.

Results
Experiment settings and dataset
To test the applicability of the algorithm,we acquireddifferent types of point
clouds using different devices. Specifically, we acquired point clouds of
several stone carvings in the imperial tombs of the Northern Song Dynasty
using the Structure from Motion (SfM) technique33 (civil officials, auspi-
cious poultry, stone elephant, and stone horse), Fig. 7 shows the appearance
of the selected stone carvings. Point clouds of terracotta warriors and stelae
acquired with a structured light scanner, and point clouds of stone carvings
(civil officials, auspicious poultry, and stone horse) acquired with a terres-
trial laser scanner (FARO Focus Premium 350). We also selected Dragon
and Lucy from the Stanford public dataset as experimental data. Table 1
shows the point cloud data sources used for the experiments.

For the software platform, the entire algorithm programming was
implemented in C++ under Windows 10 OS. The specific hardware
parameters of the computer were: AMD R7-5800H CPU, 16 GB RAM.

Experimental parameter setting
The parameters that need to be manually set in this paper are the neigh-
borhood search radius r and the weight value in the saliency calculation
process, but they are fixed values in the subsequent simplification process of
different point cloud models in this paper and do not need to be changed.

The radius r in the sphere neighborhood is a keyparameter in theKNN
(K-nearest neighbors) algorithm, directly determining the number of
neighboringpoints andaffecting the calculationof roughness and curvature.
If the search radius is too large, the model may underfit and fail to capture
the complex structure of the data, while also increasing computational load.
Conversely, selecting a smaller radius makes the model more sensitive,
potentially leading to overfitting and significant discrepancies between the
fitted surface and the actual surface. Hence, choosing an appropriate search
radius is crucial.

Since both roughness and curvature calculations use the same neigh-
borhood, this study opted to experiment with curvature to find an appro-
priate search radius. The experiment focused on a stone carving of a civil
official from the Northern Song Dynasty Imperial Mausoleum, with
approximately 760,000 points. Radius values were set at 0.01m, 0.02m,
0.04m, and 0.08m, and the curvature values were used as gradients for
rendering. The distribution of different colors was observed to determine if
the radius was suitable.

Figure 8 illustrates the curvature rendering results obtained under
different radii, where blue indicates lower curvature values and red indicates
higher curvature values. Fromthefigure, it canbeobserved that as the radius
increases, the differences in curvature values gradually decrease. At radius of
0.01m, 0.04m, and0.08m, theobtained curvatures fail to capture thedetails

Fig. 5 | Region division results. a original point cloud, b primary feature regions,
c secondary feature regions, d non-feature regions.

Fig. 6 | Result of region-based simplification of a
point cloud cluster.
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of the model effectively. However, at a radius of 0.02m, the curvature
obtained canbetter capture thedetails of themodel. Therefore, the curvature
rendering effect is best when the radius is set to 0.02m, and the calculation
speed is also faster at this time.

Equation (8) is the core formula for saliency calculation with two
parameters,a andb.Differentparameterswill affect the simplification effect.

We set different values of a and b and compare the results for the model’s
primary feature region. The parameters corresponding to a, b, c, d and e in
Fig. 9; From the visual results, the feature regions of themodel in Figs. 8a, 9b
are severely missing, while Fig. 9d, e contain many non-feature points;
Fig. 9c shows the best results. However, different models may require dif-
ferent parameter settings, and to avoid the complicated parameter tuning
process,we set theparametersa and b to 0.5 in the experiments in this paper.

Experimental results
To demonstrate the validity of themethod in this paper, we also introduced
four other methods for comparison, including Poisson Disk Sampling
(PDS)34 andMontecarlo Sampling (MS) implemented usingMeshlab 2022,
andCurvature Sampling (CS) andVoxel Sampling (VS) implemented using
Geomagic 2021. In addition, the clustering- and saliency-based simplifica-
tionmethod proposed in this paper is abbreviated as CSS. The experimental

Fig. 8 | Visualization results of curvature under different values. a r = 0.01,
b r = 0.02, c r = 0.04, d r = 0.08.

Fig. 9 | The primary feature region of the model with different parameter set-
tings. a = 0.1, b = 0.9 a = 0.3, b = 0.7 a = 0.5, b = 0.5 a = 0.7, b = 0.3 a = 0.9, b = 0.1.

Table 2 | Simplification results of the proposedmethod onSfM
point clouds

Model Original Points Initial
simplification

Simplified
results

Simplify
ratio

Civil officials 15,828,112 761,890 60,717 99.6%

Auspicious
poultry

16,115,599 2,081,788 137,668 99.1%

Stone horse 20,360,243 2,197,682 124,278 99.4%

Stone
elephant

4,949,567 957,935 104,655 97.9%

Fig. 7 | Appearance of the stone carvings selected for the experiment. a Civil
officials, b Auspicious poultry, c Stone horse, d Stone elephant.

Table 1 | Details of point cloud data sources used in the
experiments

Data acquisition
method

Instrument Number of
models

Name

SfM DJI pocket 2 4 Civil officials (CO)

Auspicious
poultry (AP)

Stone horse (SH)

Stone elephant (SE)

Structured light Handyscan 700 3 No.1 Terra-cotta
warriors (TW 1)

No.2 Terra-cotta
warriors (TW 2)

No.3 Terra-cotta
warriors (TW 3)

Terrestrial laser
scanning

FARO Focus
Premium 350

3 Civil officials (CO 1)

Auspicious poultry
(AP 1)

Stone horse (SH 1)

Stanford dataset - 2 Lucy, Dragon

Fig. 10 | Simplified results of Civil official point cloud from SfM. a CSS, b PDS,
cMS, d CS, e VS.
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results of somemodels are shown in the SupplementaryMaterial. The same
simplification rate is required to do the comparison experiments, defining
the simplification rate35 as:

ω ¼ 1� Nr

Ns

� �
× 100% ð10Þ

Where Nr and Ns are the number of simplified point clouds, and original
point clouds.

Simplification results of the SfM point cloud: Table 2 shows the details
of the point clouds based on the SfM. Figure 10 shows the simplification
results of the Civil officials' point cloud with the same or approximate
simplification rates for these five methods. Additional experimental results
canbe found in FiguresA.1 toA.3 in the SupplementaryMaterial. Evenwith
a very high simplification rate of the point cloud, we can see that themethod
in this work shows a significant difference between the feature and non-
feature regions. In the regions with features such as object protrusion and
depression, the number of point clouds retained by themethod in this work
is much higher than that in the non-featured regions. Moreover, this
method achieves a good balance between highlighting feature regions and
maintaining the integrity of the entire point cloud. In contrast, the
curvature-based algorithm retains too many points in the feature regions,
resulting in the creation of some holes and an imbalance between the sal-
iency of feature regions and the integrity of the entire point cloud. Although
the three methods of Poisson slice sampling, Monte Carlo sampling, and

Table 3 | Simplification results of the proposed method on structured light point clouds

Model Original Points Initial simplification Simplified results Simplify ratio

Terra-cotta warriors 1 5,091,261 - 123,686 97.6%

Terra-cotta warriors 2 4,359,687 - 119,637 97.3%

Terra-cotta warriors 3 3,625,660 - 119,929 96.7%

Stele 27,546,999 1,949,501 111,826 99.6%

Fig. 11 | Simplified results of No.1 Terra-cotta warriors point cloud. a CSS, b PDS,
cMS, d CS, e VS. Fig. 12 | Details of the Civil official point cloud from TLS.

Fig. 13 | Simplified results of Civil official point cloud from TLS. a CSS, b PDS,
cMS, d CS, e VS.

Table 4 | Simplification results of the proposedmethod on TLS
point cloud

Model Original
Points

Initial
simplification

Simplified
results

Simplify
ratio

Civil officials 1 2,687,905 - 209,419 92.2%

Auspicious
poultry 1

3,951,035 - 220,545 94.4%

Stone horse 1 10,991,512 1,965,462 190,097 98.3%

Fig. 14 | Simplified results for other data. a Auspicious poultry, b Stone horse,
c Stone elephant, d Lion, e Armadillo, f gargoyle, g dragon, h Terra-cotta warriors.
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voxel sampling do not produce holes in the point cloud, they do not show a
clear distinction between feature and non-feature regions. They cannot
preserve the protrusion of feature regions.

Simplification results of structured light point cloud: Table 3 shows the
details of the point clouds based on the structured light. Figure 11 shows
the simplification results of the No.1 Terra-cotta warriors point cloud with
the same or approximate simplification rates for these five methods.
Additional experimental results can be found in Figures B.1 to B.3 in the
Supplementary Material. It can be clearly seen that the simplified method
proposed in this work has significant advantages in terms of feature
retention. A large number of point clouds are preserved, whether in the hat,
texture, or eyes, whilemany features are lost in the othermethods. Although
the curvature-based method can also retain more feature points, its visua-
lization is much less effective than the method in this work.

Simplification results of terrestrial laser scanning point cloud: Table 4
shows the details of the point clouds based on terrestrial laser scanner (TLS).
There are obvious differences between TLS point clouds, SfM point clouds,
and structured light point clouds. As shown in Fig. 12, TLS point cloud has
non-uniform density and point cloud holes, while the SfM point cloud and
the structured light point cloud do not have these problems. The simplified
results of these five methods for the Civil official point cloud from TLS are
shown in Fig. 13. Additional experimental results are presented in Sup-
plementary Material Figs. C.1 and C.2. The method in this paper still has
significant advantages even in the case of non-uniform density and point
cloud holes.

Simplified results for other data: Fig. 14 demonstrates the simplifica-
tion results of our method on other datasets, proving the robustness of our
approach.

Fig. 15 | Simplifiedmeshmodel of Civil official from
SfM point cloud. a Original model, b CSS, c PDS,
d MS, e CS, f VS.
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Visual and quantitative evaluation
Visual evaluation: To visually compare the simplified results of point clouds,
we used Magic3D software to generate surface encapsulations of the sim-
plified models. For the simplified results obtained by different methods on
the same model, we use Magic3D software to reconstruct the mesh under
the same parameter settings to ensure a fair comparison (shown in
Figs. 15–17). The blue area represents the surface of the encapsulatedmodel,
while the yellow area represents the holes. We evaluated the simplified
models using both visual and quantitative methods. For the visual evalua-
tion, we compared the simplified models generated by different methods
side-by-side.

The Civil officials and Terra-cotta warriors all have rich textures and
grooves, displaying complex detailed features. By comparing the simplified
models in Figs. 16–18, we can see the effects of different methods. Both the
MSandCSmethods have different degrees of holes in the simplifiedmodels,

and the CS method has the most obvious holes. The PDS and VS methods
do not produce holes, but the contours in the detail parts are not clear
enough. Compared with the other methods, CSS retains more points in the
detail part, and thus can show a clear contour. This means that in the
modeling results, the method of this paper performs better in handling rich
detail features such as textures and grooves. Additional experimental results
are presented in Supplementary Material Figs. A.4 to A.6, Figs. B.4 to B.6,
Figs. C.3 to C.4 and Figs. D.2.

Quantitative indicators: In the current studies on point cloud
simplification, the accuracy of simplification is usually evaluated by
comparing the grid models. In this work, we also use the grid model
to compare the error of the simplified point cloud with the original
point cloud. The point clouds are wrapped with the same parameters
using Magic3D software. Then, the area, maximum error, average
geometric error, RMS and Hausdorff distance are used as evaluation

Fig. 16 | Simplified mesh model of No.1 Terra-
cotta warriors from structured light point cloud.
a Original model, b CSS, c PDS d MS, e CS, f VS.
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metrics based on Geomagic Studio and Metro tools. The details are
described below.

Surface Area Deviation: We compute the total surface area of the
reconstructed mesh from the simplified point cloud and compare it with
that of the original. A smaller area deviation indicates that the overall
geometry has been better preserved.

ΔA ¼ A� A� ð11Þ

WhereA is the surface area of the original point cloud,A� is the surface area
of the simplified point cloud, and ΔA is the area change.

MaximumError (Max): Thismeasures the largest point-wise deviation
between the simplified and original point clouds. It reflects the worst-case
distortion caused by simplification. Average Geometric Error (Avg): The
mean of all point-wise distances between the simplified andoriginalmodels.
It provides a general indication of overall accuracy. For each point p, the
geometric error d p; S0

� �
can be defined as the Euclidean distance between

the sampled point p and its projection point on the simplified surface S0.
Equations (12) and (13) are the formulas for the maximum error and the

Fig. 17 | Simplified mesh model of Civil official
from TLS point cloud. a Original model, b CSS,
c PDS, d MS, e CS, f VS.

Fig. 18 | Surface area variation of different methods on the experimental model.
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average geometric error:

Δmax S; S0ð Þ ¼ max
p2s

jd p; S0
� �j ð12Þ

Δave S; S
0ð Þ ¼ 1

jjSjj
X
p2S

d p; S0
� �

ð13Þ

Where S is the original point cloud surface, and S0 is the simplified point
cloud surface.

Hausdorff Distance: This is a global metric that quantifies the
maximum geometric discrepancy between the surfaces of the sim-
plified and original models. The approximation error between two
meshes can be defined as the distance between the corresponding
sections of the mesh28. Given a point p and a surface S, the distance
e p; s
� �

is defined as Eq. (14), where dðÞ is the Euclidean distance
between the two points. The one-sided distance between two sur-
faces, S1 and S2, is defined as Eq. (15), and the Hausdorff distance
takes the maximum of E S1; S2

� �
and E S2; S1

� �
.

eðp; sÞ ¼ min
p02S

dðp; p0Þ ð14Þ

EðS1; S2Þ ¼ max
p2S1

eðp; S2Þ ð15Þ

RMS: The RMS of triangle edge lengths is a concise indicator of mesh
balance. For well-balanced point sets, the area and side lengths of the gen-
erated mesh should be distributed within a small range of values, while the
opposite is true for unbalanced point sets; therefore, in this paper, we use the
root mean square error (RMS) of the triangle side lengths to evaluate the
imbalance of the simplified point surface19. The RMS is defined as Eq. 16.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðli ��lÞ2
s

ð16Þ

Where li is the side length of the triangle, and �l is the average of the side
lengths of the triangle.

Quantitative evaluation results: For quantitative evaluation, we used
area, maximum error, and average geometric error as metrics. In addition,
we evaluated the imbalance of the simplified point surface using the root
mean square error (RMS)of the triangle edge length. Since the original point
cloud data of some models are too large, we use the model generated from
the original simplified point cloud as the reference model.

Fig. 22 | Hausdorff distances of different methods on the experimental model.

Fig. 19 | Maximum error of different methods on the experimental model.

Fig. 20 | Geometric average error of different methods on the experimental model.

Fig. 21 | RMS of different methods on the experimental model.
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To analyze the differences between the simplified models, the quan-
titative metrics mentioned earlier were calculated. Figure 18 shows the
amount of area deviation for different methods at the same or approximate
simplification rates. Themethod in this paper is closest to the originalmodel
area compared to the other methods, regardless of whether it is the stone
carving model or the model in the Stanford dataset.

Figures 19, 20, and 21 show the histograms ofmaximumerror, average
geometric error, and RMS, respectively. As can be seen from the graphs, the
maximum error, average geometric error, and RMS, derived from the
method presented here, are the smallest compared to other algorithms,
which proves the excellent performance of the method presented here in
point cloud simplification. As can be seen from the histogram of Hausdorff
distance in Fig. 22, the Poisson disk method also achieves good results, but
overall, the performance of the method of this paper is better.

Discussion
This paper introduces a new point cloud simplification method
specifically for 3D reconstruction of cultural relics. The core inno-
vation lies in the combination of normal vector constrained Eucli-
dean clustering and saliency analysis based on comprehensive
roughness and curvature metrics. The method adaptively identifies
the main and secondary features in each cluster. A hierarchical voxel
sampling strategy is then applied to significantly reduce the amount
of data while retaining fine surface details such as incisions and
weathering textures that are crucial in archaeological research. The
effectiveness and superiority of the proposed method are confirmed
by experiments and evaluations on different point cloud data.

Futureworkwill focus on enhancing the algorithm’s efficiency for even
larger datasets, improving its robustness against noise, and exploring the
integration of additional geometric descriptors to further refine the saliency
evaluation process. In addition, further research will be conducted on the
basis of the feature regions extracted by the method in this paper to achieve
the generation of line drawings of cultural relics.

Data availability
Part of the data supporting the findings of this study is available from
Zhengzhou University; however, access to these data is restricted. The data
were used under license for the current study and are not publicly accessible.
Interested researchers may request the data from the authors, subject to
reasonable requests and approval from Zhengzhou University. The
remaining datasets generated during the study are available in the Stanford
3D Scanning repository, [https://graphics.stanford.edu/data/3Dscanrep/].

Code availability
The source code developed and utilized in this study is not publicly
available at this time. However, the authors plan to release the
complete codebase in a public repository upon final publication.
Researchers interested in accessing the code prior to its public release
may submit a reasonable request to the corresponding author. All
requests will be reviewed, and access will be granted subject to any
necessary institutional or licensing approvals.
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