Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiology

Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver

Subjects

Abstract

Background/objectives

Maternal obesity together with androgen excess in mice negatively affects placental function and maternal and fetal liver function as demonstrated by increased triglyceride content with dysfunctional expression of enzymes and transcription factors involved in de novo lipogenesis and fat storage. To identify changes in molecular pathways that might promote diseases in adulthood, we performed a global proteomic analysis using a liquid-chromatography/mass-spectrometry system to investigate total and phosphorylated proteins in the placenta and fetal liver in a mouse model that combines maternal obesity with maternal androgen excess.

Methods

After ten weeks on a control diet (CD) or high fat/high sugar-diet, dams were mated with males fed the CD. Between gestational day (GD) 16.5 and GD 18.5, mice were injected with vehicle or dihydrotestosterone (DHT) and sacrificed at GD 18.5 prior to dissection of the placentas and fetal livers. Four pools of female placentas and fetal livers were subjected to a global proteomic analysis. Total and phosphorylated proteins were filtered by ANOVA q< 0.05, and this was followed by two-way ANOVA to determine the effect of maternal obesity and/or androgen exposure.

Results

In placenta, phosphorylated ATP-citrate synthase was decreased due to maternal obesity, and phosphorylated catechol-O-methyltransferase (COMT) was differentially expressed due to the interaction between maternal diet and DHT exposure. In fetal liver, five total proteins and 48 proteins phosphorylated in one or more sites, were differentially expressed due to maternal obesity or androgen excess. In fetal liver, phosphorylated COMT expression was higher in fetus exposed to maternal obesity.

Conclusion

These results suggest a common regulatory mechanism of catecholamine metabolism in the placenta and the fetal liver as demonstrated by higher phosphorylated COMT expression in the placenta and fetal liver from animals exposed to diet-induced maternal obesity and lower expression of phosphorylated COMT in animals exposed to maternal androgen excess.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barker DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003;18:733–6.

    Article  CAS  PubMed  Google Scholar 

  2. Durst JK, Sutton ALM, Cliver SP, Tita AT, Biggio JR. Impact of gestational weight gain on perinatal outcomes in obese women. Am J Perinatol. 2016;33:849–55.

    Article  PubMed  Google Scholar 

  3. Sir-Petermann T, Hitchsfeld C, Maliqueo M, Codner E, Echiburu B, Gazitua R, et al. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod. 2005;20:2122–6.

    Article  PubMed  Google Scholar 

  4. Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod. 2002;17:2573–9.

    Article  CAS  PubMed  Google Scholar 

  5. Roos N, Kieler H, Sahlin L, Ekman-Ordeberg G, Falconer H, Stephansson O. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ. 2011;343:d6309.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lovvik TS, Wikstrom AK, Neovius M, Stephansson O, Roos N, Vanky E. Pregnancy and perinatal outcomes in women with polycystic ovary syndrome and twin births: a population-based cohort study. BJOG. 2015;122:1295–302.

    Article  CAS  PubMed  Google Scholar 

  7. Sir-Petermann T, Maliqueo M, Codner E, Echiburu B, Crisosto N, Perez V, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:4637–42.

    Article  CAS  PubMed  Google Scholar 

  8. Maliqueo M, Sir-Petermann T, Perez V, Echiburu B, de Guevara AL, Galvez C, et al. Adrenal function during childhood and puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94:3282–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cesta CE, Mansson M, Palm C, Lichtenstein P, Iliadou AN, Landen M. Polycystic ovary syndrome and psychiatric disorders: Co-morbidity and heritability in a nationwide Swedish cohort. Psychoneuroendocrinology. 2016;73:196–203.

    Article  PubMed  Google Scholar 

  10. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52.

    Article  CAS  PubMed  Google Scholar 

  11. James JL, Chamley LW, Clark AR. Feeding your baby in utero: how the uteroplacental circulation impacts pregnancy. Physiology. 2017;32:234–45.

    Article  CAS  PubMed  Google Scholar 

  12. Scifres CM, Chen B, Nelson DM, Sadovsky Y. Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab. 2011;96:E1083–91.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab. 2014;307:E419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palomba S, Falbo A, Chiossi G, Tolino A, Tucci L, La Sala GB, et al. Early trophoblast invasion and placentation in women with different PCOS phenotypes. Reprod Biomed Online. 2014;29:370–81.

    Article  CAS  PubMed  Google Scholar 

  15. Maliqueo M, Sundstrom Poromaa I, Vanky E, Fornes R, Benrick A, Akerud H, et al. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum Reprod. 2015;30:692–700.

    Article  CAS  PubMed  Google Scholar 

  16. Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol. 2009;297:C1228–C35.

    Article  CAS  PubMed  Google Scholar 

  17. Sun M, Maliqueo M, Benrick A, Johansson J, Shao R, Hou L, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab. 2012;303:E1373–85.

    Article  CAS  PubMed  Google Scholar 

  18. Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20:210–6.

    Article  PubMed  Google Scholar 

  19. Lewis RM, Hanson MA, Burdge GC. Umbilical venous-arterial plasma composition differences suggest differential incorporation of fatty acids in NEFA and cholesteryl ester pools. Br J Nutr. 2011;106:463–7.

    Article  CAS  PubMed  Google Scholar 

  20. Diaz P, Harris J, Rosario FJ, Powell TL, Jansson T. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brumbaugh DE, Tearse P, Cree-Green M, Fenton LZ, Brown M, Scherzinger A, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013;162:930–6 e1.

    Article  CAS  PubMed  Google Scholar 

  22. Fornes R, Maliqueo M, Hu M, Hadi L, Jimenez-Andrade JM, Ebefors K, et al. The effect of androgen excess on maternal metabolism, placental function and fetal growth in obese dams. Sci Rep. 2017;7:8066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caldwell AS, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155:3146–59.

    Article  CAS  PubMed  Google Scholar 

  24. Homa LD, Burger LL, Cuttitta AJ, Michele DE, Moenter SM. Voluntary exercise improves estrous cyclicity in prenatally androgenized female mice despite programming decreased voluntary exercise: implications for Polycystic Ovary Syndrome (PCOS). Endocrinology. 2015;156:4618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roland AV, Moenter SM. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood. Endocrinology. 2011;152:618–28.

    Article  CAS  PubMed  Google Scholar 

  26. Roland AV, Nunemaker CS, Keller SR, Moenter SM. Prenatal androgen exposure programs metabolic dysfunction in female mice. J Endocrinol. 2010;207:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witham EA, Meadows JD, Shojaei S, Kauffman AS, Mellon PL. Prenatal exposure to low levels of androgen accelerates female puberty onset and reproductive senescence in mice. Endocrinology. 2012;153:4522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manti M, Fornes R, Qi X, Folmerz E, Linden Hirschberg A, de Castro Barbosa T, et al. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring. FASEB J. 2018;32:4158–71.

  29. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    Article  CAS  PubMed  Google Scholar 

  30. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447–56.

    Article  CAS  PubMed  Google Scholar 

  31. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.

    Article  CAS  PubMed  Google Scholar 

  32. Rosario FJ, Kanai Y, Powell TL, Jansson T. Increased placental nutrient transport in a novel mouse model of maternal. Obes Fetal overgrowth Obes. 2015;23:1663–70.

    CAS  Google Scholar 

  33. Aye IL, Rosario FJ, Powell TL, Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci USA. 2015;112:12858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burke AC, Huff MW. ATP-citrate lyase: genetics, molecular biology and therapeutic target for dyslipidemia. Curr Opin Lipidol. 2017;28:193–200.

    Article  CAS  PubMed  Google Scholar 

  35. Chypre M, Zaidi N, Smans K. ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun. 2012;422:1–4.

    Article  CAS  PubMed  Google Scholar 

  36. Das S, Morvan F, Jourde B, Meier V, Kahle P, Brebbia P, et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 2015;21:868–76.

    Article  CAS  PubMed  Google Scholar 

  37. Dawling S, Roodi N, Mernaugh RL, Wang X, Parl FF. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res. 2001;61:6716–22.

    CAS  PubMed  Google Scholar 

  38. Overbye A, Seglen PO. Phosphorylated and non-phosphorylated forms of catechol O-methyltransferase in rat liver, brain and other tissues. Biochem J. 2009;417:535–45.

    Article  CAS  PubMed  Google Scholar 

  39. Fornes R, Hu M, Maliqueo M, Kokosar M, Benrick A, Carr D, et al. Maternal testosterone and placental function: Effect of electroacupuncture on placental expression of angiogenic markers and fetal growth. Mol Cell Endocrinol. 2016;433:1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Lobo RA, Granger LR, Paul WL, Goebelsmann U, Mishell DR Jr.. Psychological stress and increases in urinary norepinephrine metabolites, platelet serotonin, and adrenal androgens in women with polycystic ovary syndrome. Am J Obstet Gynecol. 1983;145:496–503.

    Article  CAS  PubMed  Google Scholar 

  41. Bottalico B, Larsson I, Brodszki J, Hernandez-Andrade E, Casslén B, Marsál K, et al. Norepinephrine Transporter (NET), Serotonin Transporter (SERT), Vesicular Monoamine Transporter (VMAT2) and Organic Cation Transporters (OCT1, 2 and EMT) in Human Placenta from Pre-eclamptic and Normotensive Pregnancies. Placenta. 2004;25:518–29.

    Article  CAS  PubMed  Google Scholar 

  42. Piquer B, Fonseca JL, Lara HE. Gestational stress, placental norepinephrine transporter and offspring fertility. Reproduction. 2017;153:147–55.

    Article  CAS  PubMed  Google Scholar 

  43. Hu M, Richard JE, Maliqueo M, Kokosar M, Fornes R, Benrick A, et al. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc Natl Acad Sci USA. 2015;112:14348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998;95:9991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Myohanen TT, Schendzielorz N, Mannisto PT. Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem. 2010;113:1632–43.

    CAS  PubMed  Google Scholar 

  46. Tsunoda M, Tenhunen J, Tilgmann C, Arai H, Imai K. Reduced membrane-bound catechol-O-methyltransferase in the liver of spontaneously hypertensive rats. Hypertens Res. 2003;26:923–7.

    Article  CAS  PubMed  Google Scholar 

  47. Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction. Hypertension. 2013;61:480–7.

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Sepulveda A, Torres MJ, Valenzuela FJ, Larrain R, Figueroa-Diesel H, Galaz J, et al. Low 2-methoxyestradiol levels at the first trimester of pregnancy are associated with the development of pre-eclampsia. Prenat Diagn. 2012;32:1053–8.

    Article  CAS  PubMed  Google Scholar 

  49. Seol HJ, Cho GJ, Oh MJ, Kim HJ. 2-Methoxyoestradiol levels and placental catechol-O-methyltransferase expression in patients with late-onset preeclampsia. Arch Gynecol Obstet. 2013;287:881–6.

    Article  CAS  PubMed  Google Scholar 

  50. Salih SM, Jamaluddin M, Salama SA, Fadl AA, Nagamani M, Al-Hendy A. Regulation of catechol O-methyltransferase expression in granulosa cells: a potential role for follicular arrest in polycystic ovary syndrome. Fertil Steril. 2008;89(5, Suppl.):1414–21.

    Article  CAS  PubMed  Google Scholar 

  51. Lee LO, Prescott CA. Association of the catechol-O-methyltransferase val158met polymorphism and anxiety-related traits: a meta-analysis. Psychiatr Genet. 2014;24:52–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olsson CA, Anney RJL, Lotfi-Miri M, Byrnes GB, Williamson R, Patton GC. Association between the COMT Val(158)Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health. Psychiatr Genet. 2005;15:109–15.

    Article  PubMed  Google Scholar 

  53. Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Narvaez ML, Tovilla-Zarate CA, Fresan A. The Role of a Catechol-O-Methyltransferase (COMT) Val158Met Genetic Polymorphism in Schizophrenia: a systematic review and updated meta-analysis on 32,816 Subjects. Neuromolecular Med. 2016;18:216–31.

    Article  CAS  PubMed  Google Scholar 

  54. Hosak L. Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry. 2007;22:276–81.

    Article  PubMed  Google Scholar 

  55. Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, et al. Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: a population-based nationwide study in Sweden. Mol Psychiatry. 2016;21:1441–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, et al. Maternal polycystic ovary syndrome and risk for attention-deficit/hyperactivity disorder in the offspring. Biol Psychiatry. 2017;82:651–9.

    Article  PubMed  Google Scholar 

  57. Daniel Z, Swali A, Emes R, Langley-Evans SC. The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport. Genes Nutr. 2016;11:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luo Q, Liu X, Zheng Y, Zhao Y, Zhu J, Zou L. Ephrin-B2 mediates trophoblast-dependent maternal spiral artery remodeling in first trimester. Placenta. 2015;36:567–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Quantitative proteomic analysis and subsequent data analysis were performed at the Proteomics Core Facility at Sahlgrenska Academy, Gothenburg University. The Proteomics Core Facility is grateful to Inga-Britt and Arne Lundbergs Forskningsstiftelse for the donation of the Orbitrap Fusion Tribrid MS instrument. This work was supported by the Swedish Medical Research Council (Project No. 2014-2775 and 2018-02435), the Adlerbert Research Foundation, the Novo Nordisk Foundation (NNF17OC0026724), the Strategic Research Programme (SRP) in Diabetes at Karolinska Institutet, and the Regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet (all to ESV). The funders had no role in the study design, data collection, data analysis, preparation of the manuscript, or the decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Stener-Victorin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornes, R., Manti, M., Qi, X. et al. Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver. Int J Obes 43, 2176–2188 (2019). https://doi.org/10.1038/s41366-018-0314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-018-0314-8

This article is cited by

Search

Quick links