Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incretin-induced changes in the transcriptome of skeletal muscles of fa/fa Zucker rat (ZFR) with obesity, without diabetes

Abstract

Introduction

Glucagon-like peptide-1 receptor agonists (GLP-1ra) are increasingly used in treating type 2 diabetes and obesity. Exendin-4 (Ex-4), a long acting GLP-1ra, was previously reported to decrease oxidative stress in hepatocytes, adipocytes and skeletal muscle cells in obese nondiabetic fa/fa Zucker rats (ZFR), thereby improving insulin resistance.

Aim

We aimed first to identify Ex-4-induced changes in the transcriptome of skeletal muscle cells in ZFR.

Results

Ontology analysis of differentially expressed genes (DEGs) in ZFR versus lean animals (LR) showed that the extracellular matrix (ECM) is the first most affected cellular compartment, followed by myofibrils and endoplasmic reticulum (ER). Interestingly, among 15 genes regulated in ZFR versus LR, 14 of them were inversely regulated by Ex-4, as further confirmed by RT-qPCR. Picro-Sirius red histological staining showed that decreased ECM fiber area in ZFR is partially restored by Ex-4. Ontology analysis of the myofibril compartment revealed that decreased muscle contractile function in ZFR is partially restored by Ex-4, as confirmed by Phalloidin histological staining that showed a partial restoration by Ex-4 of altered contractile apparatus in ZFR. Ontology analysis of ER DEGs in ZFR versus LR showed that some of them are related to the AMP-activated protein kinase (AMPK) signaling pathway. Phosphorylated AMPK levels were strongly increased in Ex-4-treated ZFR.

Conclusion

Altogether, our results suggest that GLP-1ra strongly restructure ECM and reinforce contractile capabilities in ZFR, while optimizing the cellular metabolism through AMPK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decreased extracellular matrix in ZFR is partially reversed by Ex-4.
Fig. 2: Decreased expression of genes involved in muscle cell function in ZFR is partially restored by Ex-4.
Fig. 3: Effect of Ex-4 on genes of the endoplasmic reticulum compartment.
Fig. 4: RNAseq results: highly regulated genes.

Similar content being viewed by others

Data availability

Data available within the article or its Supplementary Materials. RNAseq row data available on request from the authors.

References

  1. Lyseng-Williamson KA. Glucagon-like peptide-1 receptor analogues in type 2 diabetes: their use and differential features. Clin Drug Investig. 2019;39:805–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahren B. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: a rational drug development. J Diabetes Investig. 2019;10:196–201.

    Article  CAS  PubMed  Google Scholar 

  3. Muller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nauck MA, Meier JJ. Management of endocrine disease: are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181:R211–34.

    Article  CAS  PubMed  Google Scholar 

  5. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43 Suppl 1:S98–110.

  6. Colin IM, Colin H, Dufour I, Gielen CE, Many MC, Saey J, et al. Extrapancreatic effects of incretin hormones: evidence for weight-independent changes in morphological aspects and oxidative status in insulin-sensitive organs of the obese nondiabetic Zucker rat (ZFR). Physiol Rep. 2016;4:e12886.

  7. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88:660–72.

    Article  CAS  PubMed  Google Scholar 

  11. Molnar J, Fong KS, He QP, Hayashi K, Kim Y, Fong SF, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta. 2003;1647:220–4.

    Article  CAS  PubMed  Google Scholar 

  12. Blackburn PR, Xu Z, Tumelty KE, Zhao RW, Monis WJ, Harris KG, et al. Bi-allelic alterations in AEBP1 lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers-Danlos syndrome. Am J Hum Genet. 2018;102:696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014;25:245–54.

    Article  CAS  PubMed  Google Scholar 

  14. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283:32802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem. 2013;119:75–80.

    Article  PubMed  CAS  Google Scholar 

  16. Tripathi G, Salih DA, Drozd AC, Cosgrove RA, Cobb LJ, Pell JM. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J. 2009;23:2616–26.

    Article  CAS  PubMed  Google Scholar 

  17. Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis—implications for targeted therapies? Exp Dermatol. 2013;22:710–3.

    Article  PubMed  Google Scholar 

  18. Sanchez EJ, Munske GR, Criswell A, Milting H, Dunker AK, Kang C. Phosphorylation of human calsequestrin: implications for calcium regulation. Mol Cell Biochem. 2011;353:195–204.

    Article  CAS  PubMed  Google Scholar 

  19. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307:E469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rashid MM, Runci A, Polletta L, Carnevale I, Morgante E, Foglio E, et al. Muscle LIM protein/CSRP3: a mechanosensor with a role in autophagy. Cell Death Discov. 2015;1:15014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stamatikos AD, Paton CM. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab. 2013;305:E767–75.

    Article  CAS  PubMed  Google Scholar 

  22. Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, et al. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med. 2010;16:429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delaigle AM, Senou M, Guiot Y, Many MC, Brichard SM. Induction of adiponectin in skeletal muscle of type 2 diabetic mice: In vivo and in vitro studies. Diabetologia. 2006;49:1311–23.

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Li Y, Duan Y, Hu CA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017;33:73–82.

    Article  PubMed  CAS  Google Scholar 

  25. Bosma M. Lipid droplet dynamics in skeletal muscle. Exp Cell Res. 2016;340:180–6.

    Article  CAS  PubMed  Google Scholar 

  26. Gemmink A, Goodpaster BH, Schrauwen P, Hesselink MKC. Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1242–9.

    Article  CAS  PubMed  Google Scholar 

  27. Khor VK, Shen WJ, Kraemer FB. Lipid droplet metabolism. Curr Opin Clin Nutr Metab Care. 2013;16:632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60.

    Article  CAS  PubMed  Google Scholar 

  29. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wasserman DH, Kang L, Ayala JE, Fueger PT, Lee-Young RS. The physiological regulation of glucose flux into muscle in vivo. J Exp Biol. 2011;214:254–62.

    Article  CAS  PubMed  Google Scholar 

  31. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371:1131–41.

    Article  PubMed  CAS  Google Scholar 

  32. Korach-Andre M, Gounarides J, Deacon R, Beil M, Sun D, Gao J, et al. Age and muscle-type modulated role of intramyocellular lipids in the progression of insulin resistance in nondiabetic Zucker rats. Metabolism. 2005;54:522–8.

    Article  CAS  PubMed  Google Scholar 

  33. Machann J, Haring H, Schick F, Stumvoll M. Intramyocellular lipids and insulin resistance. Diabetes Obes Metab. 2004;6:239–48.

    Article  CAS  PubMed  Google Scholar 

  34. Kucera O, Cervinkova Z. Experimental models of non-alcoholic fatty liver disease in rats. World J Gastroenterol. 2014;20:8364–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab. 2009;94:1843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu H, Sui C, Xu H, Xia F, Zhai H, Zhang H, et al. The GLP-1 analogue exenatide improves hepatic and muscle insulin sensitivity in diabetic rats: tracer studies in the basal state and during hyperinsulinemic-euglycemic clamp. J Diabetes Res. 2014;2014:524517.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018;9:672.

    Article  Google Scholar 

  38. Koska J, Lopez L, D’Souza K, Osredkar T, Deer J, Kurtz J, et al. Effect of liraglutide on dietary lipid-induced insulin resistance in humans. Diabetes Obes Metab. 2018;20:69–76.

    Article  CAS  PubMed  Google Scholar 

  39. Fiorentino TV, Casiraghi F, Davalli AM, Finzi G, La RS, Higgins PB, et al. Exenatide regulates pancreatic islet integrity and insulin sensitivity in the nonhuman primate baboon Papio hamadryas. JCI Insight. 2019;4:e93091.

  40. Choung JS, Lee YS, Jun HS. Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells. J Mol Endocrinol. 2017;58:79–90.

    Article  CAS  PubMed  Google Scholar 

  41. Xu F, Cao H, Chen Z, Gu H, Guo W, Lin B, et al. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice. Int J Obes. 2020;44:937-947.

  42. Andreozzi F, Raciti GA, Nigro C, Mannino GC, Procopio T, Davalli AM, et al. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J Transl Med. 2016;14:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yu P, Xu X, Zhang J, Xia X, Xu F, Weng J, et al. Liraglutide attenuates nonalcoholic fatty liver disease through adjusting lipid metabolism via SHP1/AMPK signaling pathway. Int J Endocrinol. 2019;2019:1567095.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lund DK, Cornelison DD. Enter the matrix: shape, signal and superhighway. FEBS J. 2013;280:4089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, et al. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J. 2015;29:2894–904.

    Article  CAS  PubMed  Google Scholar 

  47. Grzelkowska-Kowalczyk K. The importance of extracellular matrix in skeletal muscle development and function. In: Travascio F, editor. Composition and function of the extracellular matrix in the human body. InTech; 2016. p. 3–24. https://www.intechopen.com/books/5225. https://doi.org/10.5772/61601

  48. Berria R, Wang L, Richardson DK, Finlayson J, Belfort R, Pratipanawatr T, et al. Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab. 2006;290:E560–5.

    Article  CAS  PubMed  Google Scholar 

  49. Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab. 2011;301:E749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Huenchullan S, McLennan SV, Verhoeven A, Twigg SM, Tam CS. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise. Obes Rev. 2017;18:776–90.

    Article  CAS  PubMed  Google Scholar 

  51. Datta R, Podolsky MJ, Atabai K. Fat fibrosis: friend or foe? JCI Insight. 2018;3:e122289.

  52. Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, et al. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Diabetes. 2011;60:416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pincu Y, Linden MA, Zou K, Baynard T, Boppart MD. The effects of high fat diet and moderate exercise on TGFbeta1 and collagen deposition in mouse skeletal muscle. Cytokine. 2015;73:23–9.

    Article  CAS  PubMed  Google Scholar 

  54. Tam CS, Power JE, Markovic TP, Yee C, Morsch M, McLennan SV, et al. The effects of high-fat feeding on physical function and skeletal muscle extracellular matrix. Nutr Diabetes. 2015;5:e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He D, Bolstad G, Brubakk A, Medbo JI. Muscle fibre type and dimension in genetically obese and lean Zucker rats. Acta Physiol Scand. 1995;155/1:1–7.

    Article  Google Scholar 

  56. Cao HY, Xu F, Chen ZL, Lin BS, Zheng XB, Yuan SH, et al. Effect of exendin-4 on lipid deposition in skeletal muscle of diet-induced obese mice and its underlying mechanism. Zhonghua Yi Xue Za Zhi. 2017;97:131–6.

  57. Wu H, Sui C, Xia F, Zhai H, Zhang H, Xu H, et al. Effects of exenatide therapy on insulin resistance in the skeletal muscles of high-fat diet and low-dose streptozotocin-induced diabetic rats. Endocr Res. 2016;41:1–7.

    Article  PubMed  CAS  Google Scholar 

  58. Huang H, Aminian A, Hassan M, Dan O, Axelrod CL, Schauer PR, et al. Gastric bypass surgery improves the skeletal muscle ceramide/S1P ratio and upregulates the AMPK/ SIRT1/ PGC-1alpha pathway in Zucker diabetic fatty rats. Obes Surg. 2019;29:2158–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thanks Mrs Catherine Rasse (support en méthodologie et calcul statistique, Louvain institute of data analysis and modeling in economics and statistics, Université catholique de Louvain (UCLouvain)) for her help in statistical analysis.

Funding

This study was supported by a grant from the “Fonds de la Recherche Scientifique dans le Hainaut 2018”, and from the King Baudouin Foundation “Amelie G488730 fund”.

Author information

Authors and Affiliations

Authors

Contributions

IMC conceived and designed the study, participated to results interpretation, and wrote the manuscript. BK participated to results interpretation and critical revision of the manuscript. ACG participated to conception and design of the study, performed experiments, data collection, data analysis, and figures design, contributed to manuscript. All authors approved the final version to be published.

Corresponding author

Correspondence to Ides M. Colin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, I.M., Knoops, B. & Gérard, AC. Incretin-induced changes in the transcriptome of skeletal muscles of fa/fa Zucker rat (ZFR) with obesity, without diabetes. Int J Obes 46, 1311–1318 (2022). https://doi.org/10.1038/s41366-022-01114-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-022-01114-2

Search

Quick links