Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation

Abstract

Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of TRPC5 increased in the central amygdala (CeA) after high-fat feeding.
Fig. 2: Changes in body weight and metabolic parameters of TRPC5 KO and TRPC5+/+ mice after HFD feeding.
Fig. 3: TRPC5 deletion in the CeA alleviated HFD-induced adiposity and promoted WAT browning after HFD feeding.
Fig. 4: Deletion of TRPC5 in the CeA increased sympathetic distribution in WAT after high-fat feeding.
Fig. 5: TRPC5 deletion in the CeA enhanced BAT function in mice fed a HFD.
Fig. 6: Deletion of central amygdalar TRPC5 elevated adaptive thermogenesis under cold exposure.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mini P, Sajan Barbara C, Hansen M, Acevedo-Duncan Mark S, Kindy Denise R, Cooper Robert V. et al. Roles of hepatic atypical protein kinase C hyperactivity and hyperinsulinemia in insulin-resistant forms of obesity and type 2 diabetes mellitus. MedComm. 2021;2:3–16. https://doi.org/10.1002/mco2.54.

    Article  CAS  Google Scholar 

  2. Roberto CA, Swinburn B, Hawkes C, Huang TT, Costa SA, Ashe M, et al. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet. 2015;385:2400–9.

    Article  PubMed  Google Scholar 

  3. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Ph. 2021;320:C375–C391.

    Article  CAS  Google Scholar 

  5. Brito NA, Brito MN, Bartness TJ. Differential sympathetic drive to adipose tissues after fooddeprivation, cold exposure or glucoprivation. Am J Physiol Regulat Integr Comp Physiol. 2008;294:R1445–R1452.

    Article  CAS  Google Scholar 

  6. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β–S100b axis. Nature. 2019;569:229–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, et al. A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020;583:839–44.

    Article  CAS  PubMed  Google Scholar 

  8. Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160:88–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castillo Armengol J, Barquissau V, Geller S, Ji H, Severi I, Venema W, et al. Hypothalamic CDK4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. Embo Rep.2020;21:e49807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Douglass AM, Kucukdereli H, Ponserre M, Markovic M, Gründemann J, Strobel C, et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci. 2017;20:1384–94.

    Article  CAS  PubMed  Google Scholar 

  11. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–82.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou M, Liu Z, Melin MD, Ng YH, Xu W, Sudhof TC. A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nat Neurosci. 2018;21:1515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kallupi M, Wee S, Edwards S, Whitfield TJ, Oleata CS, Luu G, et al. Kappa opioid receptor-mediated dysregulation of gamma-aminobutyric acidergic transmission in the central amygdala in cocaine addiction. Biol Psychiatry. 2013;74:520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tom RL, Ahuja A, Maniates H, Freeland CM, Robinson M. Optogenetic activation of the central amygdala generates addiction-like preference for reward. Eur J Neurosci. 2019;50:2086–100.

    Article  PubMed  Google Scholar 

  15. Fletcher PC, Napolitano A, Skeggs A, Miller SR, Delafont B, Cambridge VC, et al. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum. J Neurosci. 2010;30:14346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai H, Haubensak W, Anthony TE, Anderson DJ. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci. 2014;17:1240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ip CK, Zhang L, Farzi A, Qi Y, Clarke I, Reed F, et al. Amygdala NPY circuits promote the development of accelerated obesity under chronic stress conditions. Cell Metab. 2019;30:111–28. e6.

    Article  CAS  PubMed  Google Scholar 

  18. Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci USA. 2019;116:6379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan F, Jiang H, Yin H, Jiang X, Jiao F, Chen S, et al. Activation of GCN2/ATF4 signals in amygdalar PKC-ë neurons promotes WAT browning under leucine deprivation. Nat Commun. 2020;11:2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flockerzi V. An introduction on TRP channels. Springer: Berlin, Heidelberg; 2007. pp. 1–19.

  21. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387–96.

    Article  CAS  PubMed  Google Scholar 

  22. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426:517–24.

    Article  CAS  PubMed  Google Scholar 

  23. Sakaguchi R, Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic Biol Med. 2020;146:36–44.

    Article  CAS  PubMed  Google Scholar 

  24. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res. 2002;109:95–104.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu J, Zhang C, Borgquist A, Nestor CC, Smith AW, Bosch MA, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metab. 2014;19:682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao Y, Yao T, Deng Z, Sohn JW, Sun J, Huang Y, et al. TrpC5 mediates acute leptin and serotonin effects via pomc neurons. Cell Rep. 2017;18:583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sukumar P, Sedo A, Li J, Wilson LA, O’Regan D, Lippiat JD, et al. Constitutively active TRPC channels of adipocytes confer a mechanism for sensing dietary fatty acids and regulating adiponectin. Circ Res. 2012;111:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. Plos One. 2007;2:e573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell. 2009;137:761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, et al. Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol. 2013;83:429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu Z, Wei X, Sun F, Zhang H, Gao P, Pu Y, et al. Non-insulin determinant pathways maintain glucose homeostasis upon metabolic surgery. Cell Discov. 2018;4:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Emmett MJ, Lim H, Jager J, Richter HJ, Adlanmerini M, Peed LC, et al. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature. 2017;546:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei X, Wei X, Lu Z, Li L, Hu Y, Sun F, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism. 2020;105:154182.

    Article  CAS  PubMed  Google Scholar 

  34. Jian C, Fu J, Cheng X, Shen L, Ji Y, Wang X, et al. Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab. 2020;31:892–908. e11.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40:12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Betz MJ, Enerback S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol. 2018;14:77–87.

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz JR, Martinez-Tellez B, Sanchez-Delgado G, Osuna-Prieto FJ, Rensen P, Boon MR. Role of human brown fat in obesity, metabolism and cardiovascular disease: strategies to turn up the heat. Prog Cardiovasc Dis. 2018;61:232–45.

    Article  PubMed  Google Scholar 

  38. Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 2016;531:647–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell. 2021;13:394–421.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Warlow SM, Naffziger EE, Berridge KC. The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nat Commun. 2020;11:2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim MS, Luo S, Azad A, Campbell CE, Felix K, Cabeen RP, et al. Prefrontal cortex and amygdala subregion morphology are associated with obesity and dietary self-control in children and adolescents. Front Hum Neurosci. 2020;14:563415.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zholos AV. TRPC5. Handb Exp Pharmacol. 2014;222:129–56.

    Article  CAS  PubMed  Google Scholar 

  43. Plant TD, Schaefer M. TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium. 2003;33:441–50.

    Article  CAS  PubMed  Google Scholar 

  44. Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, et al. A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev. 2011;25:2659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, et al. Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington’s disease. Brain. 2015;138:3030–47.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bernal L, Sotelo-Hitschfeld P, Konig C, Sinica V, Wyatt A, Winter Z, et al. Odontoblast TRPC5 channels signal cold pain in teeth. Sci Adv. 2021;7:1–28.

    Article  CAS  Google Scholar 

  47. Adke AP, Khan A, Ahn HS, Becker JJ, Wilson TD, Valdivia S, et al. Cell-type specificity of neuronal excitability and morphology in the central amygdala. eNeuro. 2021;8:1–28.

    Article  CAS  Google Scholar 

  48. Shen B, Wong CO, Lau OC, Woo T, Bai S, Huang Y, et al. Plasma membrane mechanical stress activates TRPC5 channels. Plos One. 2015;10:e0122227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jonathan P, Fadok MMPT. New perspectives on central amygdala function. Curr Opin Neurobiol. 2018;49:141–7.

    Article  CAS  Google Scholar 

  50. Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 2014;19:741–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Lutz Birnbaumer from the Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina for providing the TRPC5flox/flox mice.

Funding

This study was supported by grants from the National Natural Science Foundation of China (81920108010, 81900761, 81873657, 81721001, and 2018YFA0800601).

Author information

Authors and Affiliations

Authors

Contributions

HM carried out all experiments in mice, acquired and analyzed data, and wrote and edited the manuscript. CH drafted and revised the manuscript. LL conceived the work and performed metabolic testing. PG designed the research protocol and revised the manuscript. ZL and YH provided methodology and analyzed data. LW performed all western blotting experiments. YZ and TC contributed to purchase of all reagents and interpreting results. YC assisted with stereotaxic brain injection experiment. HZ, GY, ZY and DL supervised the research project. ZZ conceived and directed the work, revised the manuscript and approved the final version of paper.

Corresponding author

Correspondence to Zhiming Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., He, C., Li, L. et al. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes 46, 1544–1555 (2022). https://doi.org/10.1038/s41366-022-01151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-022-01151-x

Search

Quick links