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a systematic review and meta-analysis
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OBJECTIVE: Using a systematic review and meta-analysis, we aimed to estimate the mean effect of acute glucagon administration
on components of energy balance and glucose homoeostasis in adults without diabetes.
METHODS: CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and Scopus databases were searched from inception to May 2021. To
be included, papers had to be a randomised, crossover, single- or double-blind study, measuring ad libitum meal energy intake,
energy expenditure, subjective appetite, glucose, and/or insulin following acute administration of glucagon and an appropriate
comparator in adults without diabetes. Risk of bias was assessed using the Revised Cochrane Risk of Bias Tool for Randomized trials
with additional considerations for cross-over trials. Certainty of evidence was assessed using the GRADE approach. Random-effect
meta-analyses were performed for outcomes with at least five studies. This study is registered on PROSPERO (CRD42021269623).
RESULTS: In total, 13 papers (15 studies) were considered eligible: energy intake (5 studies, 77 participants); energy expenditure
(5 studies, 59 participants); subjective appetite (3 studies, 39 participants); glucose (13 studies, 159 participants); insulin (12 studies,
147 participants). All studies had some concerns with regards to risk of bias. Mean intervention effect of acute glucagon
administration on energy intake was small (standardised mean difference [SMD]: –0.19; 95% CI, –0.59 to 0.21; P= 0.345). Mean
intervention effect of acute glucagon administration on energy expenditure (SMD: 0.72; 95% CI, 0.37–1.08; P < 0.001), glucose (SMD:
1.11; 95% CI, 0.60–1.62; P < 0.001), and insulin (SMD: 1.33; 95% CI, 0.88–1.77; P < 0.001) was moderate to large.
CONCLUSIONS: Acute glucagon administration produces substantial increases in energy expenditure, and in circulating insulin and
glucose concentrations. However, the effect of acute glucagon administration on energy intake is unclear. Insufficient evidence was
available to evaluate the acute effect of glucagon on subjective appetite.
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INTRODUCTION
Obesity is a global health burden associated with increased
cardiometabolic disease risk and mortality [1, 2]. Lifestyle
modification centred on dietary restriction and increased physical
activity is the first-line treatment. However, adherence to such
programmes is typically poor and weight-loss often modest [3, 4].
Bariatric surgery produces substantial and sustained weight loss
[5], but it is not universally available or acceptable to all eligible
patients. Therefore, pharmacological interventions are urgently
required for long-term weight-loss.
Glucagon is a 29 amino acid polypeptide synthesised by the

alpha cells of the pancreatic islets, which acts via the glucagon
receptor (GCGR) to exert various physiological effects [6].
Glucagon is primarily known for its role in glucose homoeostasis
[7], but has also been identified as a key regulator of amino acid
metabolism [8]. Furthermore, glucagon is implicated in the stress

response, being released under conditions of psychological and
metabolic stress [9], including prolonged fasting [10] and acute
exercise [11]. Evidence from rodent models have demonstrated
that glucagon can also regulate energy balance, acting to
concurrently raise energy expenditure [12] and suppress energy
intake [13], and thus influence body weight [14]. This is thought to
be achieved via both direct mechanisms, including GCGR
activation on target tissues such as the hypothalamus [15] and
brown adipose tissue [16], and indirect mechanisms, including the
release of other hormones such as fibroblast growth factor 21 [17]
and catecholamines [18].
GCGR agonism has consequently been identified as a possible

therapeutic target for obesity, and a number of studies have
investigated the effects of acute glucagon administration on
energy intake and energy expenditure in humans. However, the
magnitude and/or direction of effects following glucagon
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administration has been mixed for these components [19–23],
likely attributable to differences in study design. Indeed, effects
attributed to glucagon are frequently confounded by co-infusion
of other bioactive peptides, such as somatostatin [24, 25].
Moreover, many studies do not include an appropriate control
arm, instead favouring pre-post designs that do not exclude the
effect of time on observed responses [26–28].
We therefore conducted a systematic review and random-

effects meta-analysis to estimate the mean effects of acute
glucagon administration on energy intake, energy expenditure,
and subjective hunger in adults without diabetes. Furthermore,
mean glucose and insulin responses following acute glucagon
administration were also estimated due to their influence on
energy balance [29, 30] and recognised association with glucagon.

METHODS
Registration
This Review was registered in the international prospective
register of systematic reviews (PROSPERO; registration number:
CRD42021269623) and written in accordance with the recom-
mendations outlined in the PRISMA 2020 statement [31].

Eligibility criteria
Population. We included randomised, controlled, single- or double
blind, crossover studies in adults (>18 years old) of any body mass
index (BMI) value. Studies performed in current smokers, pregnant
individuals, or individuals with a history of chronic disease (including
type 1 and type 2 diabetes) were excluded.

Intervention. Administration of glucagon via any route (intravenous,
intramuscular, intranasal) for less than 24 h while at rest. Studies
which administered glucagon for longer than 24 hours or co-infused
pharmacological agents (e.g. somatostatin) were excluded. Studies
could be performed in the fasted or postprandial state.

Comparator. To be included, studies must have performed a
time-and energy matched control arm that administered an
energy-free control agent (e.g. saline) in place of glucagon.

Outcome. Studies measuring energy intake, energy expenditure,
subjective appetite, glucose, and/or insulin were included.
We only considered studies written in the English language and

published in peer-reviewed journals. Conference abstracts were
excluded. If methodology and/or participant characteristics were
not described sufficiently to determine study eligibility, corre-
sponding authors were contacted. If the author did not respond, or
could not provide the required information, the study was
excluded.

Information sources and search strategy
J.F. searched CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and
Scopus databases on 24 May 2021. Embase and Medline
databases were accessed via Ovid, and the CINAHL database
was accessed via EBSCOhost. All databases were searched from
inception to 24 May 2021.
The search strategy was developed based on the PICO format,

with additional concepts incorporated to exclude pre-clinical
studies. Full details of the search strategy are provided in
Supplementary Appendix A. No limits were used during any
database search.
Backward (using Google Scholar) and forward citation searching

of eligible papers was also performed by J.F on 23 July 2021.

Selection process
Results of each database search were imported into Covidence
systematic review software (Veritas Health Innovation, Australia).
Duplicate results were automatically detected and removed by

Covidence. Title and abstracts were then independently screened
by JF and ESC, with each paper being classified as ‘yes’,’no’ or
‘maybe’. Papers classified as ‘yes’ or ‘maybe’ by both JF and ESC
continued to the full-text screening phase. All disputes (papers
with a ‘yes’ or ‘maybe’ and a ‘no’ vote) were resolved prior to
conducting full-text screening. Full texts of each paper were then
accessed and independently classified as ‘yes’ or ‘no’ by JF and
ESC. Papers classified as ‘yes’ continued to the data extraction
phase. Disputes following full-text screening (papers with a ‘yes’
and a ‘no’ vote) were resolved via a meeting with all authors prior
to data extraction.

Data collection
Corresponding authors for all eligible studies were first contacted
for raw study data. If authors did not respond or could not provide
raw study data, data were extracted from the published manu-
script. WebPlotDigitizer Version 4.2 (Ankit Rohatgi, USA) was used
to extract data from papers that only presented data in a figure.
When data were displayed inadequately (e.g. clustering of data

points, overlapping of error bars) or data were not reported in
published manuscript or supplementary materials (despite meth-
ods stating measurements had been taken), the paper was no
longer considered eligible and excluded from analysis.
Data were collected by a single author (JF) and stored in an

electronic spreadsheet (Excel 2016, Microsoft Corporation, USA). If
data were presented from multiple glucagon doses, only data
from the highest dose was collected. ESC checked the accuracy of
collected data by comparing the results stored in the electronic
spreadsheet with those in the published manuscript or raw
study data.

Data items
Eligible outcomes were defined as follows. Energy intake—total ad
libitum energy intake at the first meal presented to participants
following the administration of glucagon and comparator.
Measured in kcal, kJ, or grams.
Energy expenditure—change in energy expenditure (pre- vs

post-administration) in the glucagon and comparator arms, in
which pre-administration is a baseline measurement prior to
glucagon/comparator administration and post-administration is a
measurement at least 30 min after initial glucagon/comparator
administration (to allow sufficient time for an effect to be
observed). Alternatively, baseline and at least two other time-
points during the glucagon and comparator arms, or total energy
expenditure during the glucagon and comparator arms. Measured
in kcal, kJ, or V̇O2.
Subjective appetite—assessed at baseline and at least two

other timepoints during the glucagon and comparator arms.
Alternatively, total or incremental area under the curve (AUC) for
the glucagon and comparator arms. Measured by a visual
analogue scale (VAS) or other questionnaire assessing a domain
relating to appetite (e.g. hunger, pleasantness, prospective
consumption, fullness) or a composite appetite score.
Glucose—assessed at baseline and at least two other time-

points during the glucagon and comparator arms. Alternatively,
total or incremental AUC for the glucagon and comparator arms.
Measured in serum or plasma.
Insulin—assessed at baseline and at least two other timepoints

during the glucagon and comparator arms. Alternatively, total or
incremental AUC for the glucagon and comparator arms.
Measured in serum or plasma.
Pre-vs post administration values were accepted for energy

expenditure (but not subjective appetite, glucose, or insulin) due
to energy expenditure measurements being performed over
extended time periods (e.g. 10–30min) compared to measure-
ments taken at single time points.
The following data items were also collected relating to paper,

participant, and intervention characteristics: author(s), year of
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publication, sample size, proportion of males, participant age,
participant BMI, degree of blinding, route of administration,
glucagon dose, and duration of administration.

Risk of bias assessment
Risk of bias assessment was performed by a single author (JF).
Risk of bias of included studies was assessed using the Revised
Cochrane Risk of Bias Tool for Randomized trials (RoB 2.0) with
additional considerations for cross-over trials. Risk of bias was
assessed using the following domains: bias arising from the
randomization process; bias arising from period and carryover
effects; bias due to deviations from intended intervention; bias
due to missing outcome data; bias in the measurement of the
outcome; and bias in the selection of the reported result. Risk of
bias assessment was performed for each outcome (energy intake,
energy expenditure, subjective appetite, glucose, insulin), in
which the risk of bias of each individual study was determined by
the highest risk of bias level attained in any of the assessed
domains. Studies were not excluded based on the risk of bias
assessment.

Data synthesis
Data were collated and grouped by outcome (energy intake,
energy expenditure, subjective appetite, glucose, insulin). Stan-
dard errors and 95% confidence intervals (CIs) were converted to
standard deviations. For energy expenditure, subjective appetite,
glucose, and insulin outcomes only, and for studies in which only
time-series data were reported, total AUC was calculated for
glucagon and comparator arms using the maximum number of
timepoints available. If data were extracted from figures using
WebPlotDigitizer, standard deviations of AUCs were estimated
using the AUC of values depicted by the corresponding top or
bottom error bars. If multiple data types were presented (AUC,
time points, and/or pre- vs post-administration), the order of
priority for extraction was as follows: AUC > time points > pre- vs
post-administration.
Standardised mean differences (SMDs) were then calculated for

each study as described by Higgins et al. [2]. When raw study data
were not available, a correlation coefficient of 0.5 was assumed to
calculate the standard error of the SMD [27]. Sensitivity analyses
using correlation coefficients of 0.3, 0.7, and 0.9 were performed
to assess the robustness of findings to this assumption.
A random-effects meta-analysis model was selected as the

effect of glucagon administration on outcomes was expected to
vary across studies due to differences in participant and
intervention characteristics. This model assumes a distribution of
true effect sizes across studies and provides an estimate of the
mean intervention effect of this distribution [32, 33]. Between-
study variance (τ2) was estimated using the Hartung-Knapp-Sidik-
Jonkman method [34, 35], with summary effect CIs being
calculated using the Wald-type method [36]. Results of syntheses
were presented using forest plots. Leave-one-out meta-analysis
was also performed to identify studies that have a large influence
on the summary effect estimate.
Statistical heterogeneity was assessed using the τ2 and I2

statistics alongside their corresponding 95% CIs. Random-effects
95% prediction intervals (PIs) were also calculated to facilitate the
interpretation of statistical heterogeneity by providing an
expected range of intervention effects in similar future studies.
Mixed-effects meta-regression using the Knapp and Hartung
adjustment [37] was used to explore possible causes of statistical
heterogeneity for outcomes with at least ten studies. Separate
univariable models were created for each potential moderator: (i)
route of administration, and (ii) total glucagon dose. The choice of
moderators was made post-hoc.
Potential publication bias was assessed via visual inspection of

contour-enhanced funnel plots [38] and statistically by Egger’s
regression test for outcomes containing at least 10 studies. Trim

and fill analyses (L0 estimator) were used when publication bias
was suspected to explore its impact on effect sizes [39].
All analyses were performed in R version 4.1.0 [40] using the R

package ‘metafor’ [41] by one author (JF). Random-effects meta-
analysis was only performed for outcomes with at least five
studies [42]. Individual study effects were described for outcomes
with less than five studies.

Certainty of evidence assessment
Certainty of evidence was assessed by two authors (JF and ESC)
using the GRADE approach [43, 44]. Certainty of evidence was
assessed using the following domains: study limitations, consis-
tency of effect, imprecision, indirectness, and publication bias.
Estimated effect of each outcome was independently classified as
high (true effect is similar to the estimated effect), moderate (true
effect is probably close to the estimated effect), low (true effect
might be markedly different from the estimated effect), or very
low (true effect is probably markedly different from the estimated
effect) certainty of evidence.

RESULTS
Study selection
Database searching found 24,833 potentially eligible papers.
Following removal of duplicates, 13,020 papers underwent title
and abstract screening, resulting in the removal of 12,744 papers.
Consequently, 246 papers underwent full-text screening, yielding
13 eligible papers. Due to several papers containing multiple
studies, a total of 15 separate studies were deemed eligible.
The following number of studies proved eligible for each
outcome: energy intake, 5 studies; energy expenditure, 5 studies;
subjective appetite, 4 studies; glucose, 13 studies; insulin,
12 studies. This process is summarised in Fig. 1.
Several studies appeared to meet inclusion criteria but were

subsequently excluded due to insufficient information regarding
blinding, randomization, and comparator used (Supplementary
Appendix B).

Study characteristics
Study characteristics of included studies are presented in Table 1.

Risk of bias
The results of the risk of bias assessment for each outcome are
presented in Supplementary Appendix C. With regards to overall
risk of bias, there were some concerns for all studies included in
the review, irrespective of the outcome measured. This was
primarily due to inadequate reporting of the randomization and
sequence allocation process, or inadequate reporting of the
analysis plan.

Meta-analysis
Data used for meta-analysis is presented in Supplementary
Appendix D. This also includes details of data source.

Energy intake. Five studies comprising 77 participants (90%
males) measured ad libitum energy intake following comparator
and glucagon administration [20, 21, 45–47]. Of these five studies,
four used intravenous administration [20, 23, 45, 46] and one used
intranasal administration [47]. Average age of participants ranged
from 22.0 to 48.5 years, with three studies being conducted in
healthy-weight participants (18.5 ≥ BMI < 25.0) [20, 23, 46] and
two studies being conducted in overweight participants
(25.0 ≥ BMI < 30.0) [45, 47].
Mean intervention effect of glucagon administration relative to

comparator on ad libitum meal energy intake was SMD= –0.19
(95% CI, –0.59 to 0.21; P= 0.345; Fig. 2). Measures of statistical
heterogeneity were τ2= 0.16 (95% CI, 0.03–1.67) and I2= 81%
(95% CI, 41–98%). According to the 95% PI, the effect size for acute
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glucagon administration relative to comparator on ad libitum meal
energy intake is expected to range from –1.60 to 1.22 in future
similar studies. Meta-regression and assessments of publication
bias were not performed due to an insufficient number of studies.

Energy expenditure. Five studies containing 59 participants (84%
males) measured energy expenditure following comparator and
glucagon administration [21, 22, 45, 47, 48]. Of these five studies,
four used intravenous administration [21, 22, 45, 48] and one used
intranasal administration [47]. Average age of participants ranged
from 25.8 to 26.1 years, with two studies being conducted in
healthy-weight participants [21, 22] and three studies being
conducted in overweight participants [45, 47, 48].
Mean intervention effect of glucagon administration relative to

comparator on energy expenditure was SMD= 0.72 (95% CI,
0.37–1.08; P < 0.001; Fig. 3). Measures of statistical heterogeneity
were τ2= 0.04 (95% CI, 0.00–0.74) and I2= 23% (95% CI, 0–85%).
According to the 95% PI, the effect size for acute glucagon
administration relative to comparator on energy expenditure is

expected to range from –0.12 to 1.56 in future similar studies.
Meta-regression and assessments of publication bias were not
performed due to an insufficient number of studies.

Subjective appetite. Four studies comprising 57 participants (73%
males) measured subjective appetite following comparator and
glucagon administration [19, 20]. Of these four studies, two used
intramuscular [19] administration and two used intravenous
administration [20, 23]. Average age of participants ranged from
22.0 to 28.4 years, with three studies being conducted in healthy-
weight participants [19, 20, 23] and one study being conducted in
obese participants (BMI ≥ 30.0) [19]. Two studies reported
subjective satiety [19], one study reported a composite appetite
score [20], and one study reported subjective hunger [23].
Due to the limited number of studies, a meta-analysis was not

performed. However, two studies reported an increase in
subjective appetite following glucagon administration relative to
comparator [19, 20] and two studies reported a decrease in
subjective appetite [19, 23] (Supplementary Appendix D).

Papers identified from:
CENTRAL (n = 2,001)

CINAHL (n = 971)
Embase (n = 8,402)

MEDLINE (n = 5,061)
PubMed (n = 4,205)
Scopus (n = 4,193)

Papers removed before screening:
Duplicate papers removed (n = 11,813)

Papers screened
(n = 13,020) Papers excluded (n = 12,774)

Papers sought for retrieval
(n = 246) Papers not retrieved (n = 40)

Papers assessed for eligibility
(n = 206)

Papers excluded:
Wrong study design (n = 105)

Wrong comparator (n = 36)
Inadequate reporting of methods (n = 18)

Wrong intervention (n = 15)
Inadequate reporting of data (n = 10)

Wrong outcomes (n = 5)
Not in English (n = 2)

Wrong patient population (n = 2)

Papers included in review
(n = 13)

15 studies

Energy intake: 5 studies
Energy expenditure: 5 studies
Subjective appetite: 4 studies

Glucose: 13 studies
Insulin: 12 studies

Identification of studies via databases
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Fig. 1 Flow diagram of paper selection. Flow diagram showing the flow of information throught the phases of the systematic review.
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Glucose. Thirteen studies comprising 159 participants (80%
males) measured glucose following comparator and glucagon
administration [19–21, 23, 45, 47–52]. Of these 13 studies, nine
used intravenous administration [20, 21, 23, 45, 48–52], 3 used
intramuscular administration [19, 49], and one used intranasal
administration [47]. Average age of participants ranged from 21.0
to 48.5 years, with five studies being conducted in healthy-weight
participants [19–21, 23, 51], four studies being conducted in
overweight participants [45, 47, 48, 50], and one study being
conducted in obese participants [19]. Three studies did not report
participant body weight characteristics [49, 52].
Mean intervention effect of glucagon administration relative to

comparator on glucose was SMD= 1.11 (95% CI, 0.60 to 1.62;

P < 0.001; Fig. 4). Measures of statistical heterogeneity were
τ2= 0.64 (95% CI, 0.71–2.10) and I2= 82% (95% CI, 55–94%).
According to the 95% PI, the effect size for acute glucagon
administration relative to comparator on glucose is expected to
range from –0.74 to 2.97 in future similar studies.
Mixed-effects meta-regression analyses with route of adminis-

tration or total glucagon dose included as a moderator did not
indicate that glucose response differed between administration
routes or across total glucagon dose (Supplementary Appendix E).
Visual inspection of the contour-enhanced funnel plot showed

asymmetry that indicated potential publication bias (Supplementary
Appendix F). This is supported by the result of Egger’s regression
test (P < 0.001). Trim and fill analysis estimated five missing studies
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Fig. 3 Forest plot of standardised mean differences between glucagon administration and comparator for energy expenditure. Results
produced from a random-effects meta-analysis using the Hartung-Knapp-Sidik-Jonkman method to estimate between-study variance. Data
are presented as mean with 95% confidence intervals. Mean-intervention effect (summary) is also presented alongside a 95% prediction
interval (grey horizontal dotted line). Sample size (N), dose (duration of administration in minutes), and route of administration (colour of
point estimates) for each study are provided. CI confidence interval, PI prediction interval, SMD standardised mean difference.

Summary

−2 −1 0 1

Study SMD [95% CI]SMD [95% CI]

Bagger et al. [20]

Cegla et al. [45]

Geary et al. [46]

Izzi-Engbeaya et al. [23]

Stahel et al. [47]

15

13

12

18

19

3.8 ng/kg/min (270')

9.8 ng/kg/min (120')

3 ng/kg/min (10')

7 ng/kg/min (480')

0.7 mg (bolus)

N Dose (duration) Weight (%)

16.55

17.52

24.80

21.60

19.52

-0.85 [-1.44, -0.26]

0.00 [-0.54, 0.54]

-0.42 [-0.61, -0.24]

0.37 [0.02, 0.73]

-0.13 [-0.58, 0.32]

100 -0.19 [-0.59, 0.21]

Intravenous Intramuscular Intranasal

↑ energy intake↓ energy intakeI2: 81% (95% CI, 41% to 98%) 

2: 0.16 (95% CI, 0.03 to 1.67) 

95% PI: -1.60 to 1.22 

Fig. 2 Forest plot of standardised mean differences between glucagon administration and comparator for ad libitum energy intake.
Results produced from a random-effects meta-analysis using the Hartung-Knapp-Sidik-Jonkman method to estimate between-study variance.
Data are presented as mean with 95% confidence intervals. Mean-intervention effect (summary) is also presented alongside a 95% prediction
interval (grey horizontal dotted line). Sample size (N), dose (duration of administration in minutes), and route of administration (colour of
point estimates) for each study are provided. CI confidence interval, PI prediction interval, SMD standardised mean difference.

J. Frampton et al.

1953

International Journal of Obesity (2022) 46:1948 – 1959



on the left side of the funnel plot (Supplementary Appendix F),
resulting in adjusted SMD of 0.63 (95% CI, 0.01, 1.25; P= 0.046).

Insulin. Twelve studies comprising 147 participants (79% males)
measured insulin following comparator and glucagon administra-
tion [19–21, 23, 45, 47–49, 51, 52]. Of these 12 studies, eight used
intravenous administration [20, 21, 23, 45, 48, 49, 51, 52], three
used intramuscular administration [19, 49], and one used
intranasal administration [47]. Average age of participants ranged
from 21.0 to 48.5, with five studies being conducted in healthy-
weight participants [19–21, 23, 51], three studies being conducted
in overweight participants [45, 47, 48], and one study being
conducted in obese participants [19]. Three studies did not report
participant body weight characteristics [49, 52].
Mean intervention effect of glucagon administration relative to

comparator on insulin was SMD= 1.33 (95% CI, 0.88–1.77;
P < 0.001; Fig. 5). Measures of statistical heterogeneity were
τ2= 0.45 (95% CI, 0.13–1.56) and I2= 83% (95% CI, 58–95%).
According to the 95% PI, the effect size for acute glucagon
administration relative to comparator on insulin is expected to
range from –0.25 to 2.91 in future similar studies.
Mixed-effects meta-regression analyses with route of adminis-

tration or total glucagon dose included as a moderator did not
indicate that insulin response differed between administration
routes or across total glucagon dose (Supplementary Appendix E).
Visual inspection of the contour-enhanced funnel plot showed

asymmetry that indicated potential publication bias (Supplementary
Appendix F). This is supported by the result of Egger’s regression
test (P < 0.001). Trim and fill analysis estimated three missing studies
on the left side of the funnel plot (Supplementary Appendix F),
resulting in adjusted SMD of 1.07 (95% CI, 0.57, 1.58; P < 0.001).

Sensitivity analyses. Sensitivity analyses employing correlation
coefficients of 0.3, 0.7 and 0.9 did not meaningfully alter the mean
intervention effect and overall interpretation of glucagon admin-
istration on energy intake, energy expenditure, glucose, or insulin
(Supplementary Appendix G).
Two studies were identified during the full-text screening phase

that selected glucagon doses that were defined as sub-anorectic

[45] or prevented hyperglycaemia [47]. Consequently, additional
sensitivity analyses were performed for energy intake and glucose
outcomes excluding these studies from meta-analytical proce-
dures. However, exclusion of these studies did not meaningfully
change the mean intervention effect and overall interpretation of
results for either outcome (Supplementary Appendix H).
Leave-one-out meta-analyses for energy expenditure, glucose,

and insulin did not identify any study that possessed sufficient
influence, that when excluded, resulted in a different interpreta-
tion of the summary effect estimate (Supplementary Appendix I).
The leave-one-out meta-analysis performed for energy intake did
identify one study [23] that did exert a noticeable influence, in
which its exclusion resulted in a confidence interval (and
corresponding P-value) indicative of an anorectic effect (Supple-
mentary Appendix I). However, due to the limited number of
studies eligible for this meta-analysis, the importance of this
finding is difficult to interpret.

Certainty of evidence
Certainty of evidence for energy intake, glucose and insulin was
rated as low, whilst energy expenditure was rated as high.
Explanation of judgements alongside certainty of evidence assess-
ments are presented in the summary of findings table (Table 2).

DISCUSSION
This review analysed the evidence on the effect of acute glucagon
administration on energy intake, energy expenditure, subjective
appetite, glucose, and insulin responses in humans. Meta-analyses
revealed that, on average, acute glucagon administration
increases energy expenditure, as well as glucose and insulin
concentrations. However, the effect of acute glucagon adminis-
tration on energy intake is unclear, whilst too few studies exist to
permit a meta-analysis on subjective appetite.

The effect of acute glucagon administration on components of
energy balance
The results from our analysis highlight that the effect of acute
glucagon administration on energy intake in humans is

I2: 82% (95% CI, 55% to 94%)  

95% PI: -0.74 to 2.97

2: 0.64 (95% CI, 0.71 to 2.10) 
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Fig. 4 Forest plot of standardised mean differences between glucagon administration and comparator for glucose. Results produced
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presented as mean with 95% confidence intervals. Mean-intervention effect (summary) is also presented alongside a 95% prediction interval
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inconclusive. Despite the point estimate for the mean intervention
effect suggesting a small anorectic effect, the confidence interval
for this effect was large and included both an increase and
decrease in energy intake following acute glucagon administra-
tion. This uncertainty is also reflected in the effect sizes of the
individual studies, the prediction interval for energy intake, and
the reported effects of acute glucagon administration on
subjective appetite. Indeed, no study performed a power
calculation based on differences in energy intake between groups
(with only two studies stating energy intake as a pre-registered
primary outcome [20, 23]), likely contributing to the observed
imprecision of the mean intervention effect. The small number of
eligible studies also precluded mixed-effects meta-regression
analysis from being performed, making it difficult to identify
possible moderators responsible for the heterogeneity in
responses.
It has been widely reported that glucagon administration can

increase feelings of nausea [50, 52–55]. It is therefore possible that
any observed effects in energy intake and appetite are secondary
to a change in nausea, rather than a direct influence on any
appetite-regulation system per se. Subsequently, any inconsis-
tency in response may be related to the degree of nausea
induced. However, all authors who assessed nausea reported that
glucagon had no effect on the levels of nausea experienced
[20, 23, 45], suggesting that nausea is not a likely explanation for
the level of inconsistency observed.
Anorectic effects of chronic glucagon administration have,

however, been previously reported [55, 56]; though a significant
decrease in energy intake was only observed after multiple days of
administration [55]. This suggests that either acute glucagon
doses (<48 hours of continuous infusion) may not suppress energy
intake, or that the suppression of energy intake following acute
administration may be too small to be detected using the number
of participants commonly recruited by studies investigating these
effects (<20 participants; Table 1). Both explanations are none-
theless consistent with the findings of the present meta-analysis.
In contrast to its effect on energy intake, the mean intervention

effect of acute glucagon administration on energy expenditure
was a moderate-to-large increase, which was consistent across all
included studies, and congruent with prior research in rodents

[12, 57, 58]. Mechanisms responsible for this increase in energy
expenditure may include futile substrate cycling, characterised by
a repeated conversion between glucose and glucose-6-phosphate
[59], but are unlikely related to changes in brown adipose tissue
thermogenesis [21]. The absence of any corresponding increase in
energy intake of a similar magnitude therefore suggests that acute
glucagon administration would have a favourable effect on
energy balance in the short-term.
Challenging the acute data on glucagon administration, recent

evidence has suggested that chronic administration (72 hours) of
glucagon may not raise energy expenditure [55]. This could
explain why the smallest effect in our meta-analysis was observed
in the study with the longest infusion duration (10 hours) [22], but
also questions the efficacy of chronic glucagon administration
and/or GCGR receptor agonism for weight loss via increased
energy expenditure. Moreover, most studies (3/5 in this review)
measuring energy expenditure following acute glucagon admin-
istration report pre-post measurements, preventing any investiga-
tion of temporal trends (and thus determining the time point at
which energy expenditure is no longer raised). However, it
remains to be fully elucidated whether the relative conservation
of energy expenditure following weight loss would aid weight loss
maintenance with a drug that had a glucagonergic element.
Visual inspection of changes in glucose and insulin over time

following acute glucagon administration (Supplementary Appen-
dix J) suggest the effect of glucagon on glucose homoeostasis is
transient, with values returning to baseline within 200min of
administration. Importantly, insulin and glucose levels return to
baseline despite glucagon levels remaining elevated via infusion,
implying that acute supraphysiological doses of glucagon do not
result in chronically elevated blood glucose concentrations. If it is
assumed that the release of stored liver glycogen followed by
endogenous insulin release (futile substrate cycling) is the primary
driver of increased energy expenditure following acute glucagon
administration, then a glucagonergic agent may not have
therapeutic benefit as a long-acting preparation. However, if the
energy-expenditure rise outlives the acute glucose raising effects
(for example, due to effects on amino acid metabolism), then the
absence of chronic hyperglycaemia with glucagon treatment is
reassuring. Further research is needed to confirm if the increase in
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energy expenditure following acute glucagon administration is
lost when administered chronically, to establish how energy
expenditure changes over time following acute administration,
and to firmly establish the mechanism by which glucagon acutely
and chronically elevates energy expenditure in humans. Given
glucagon’s effect on the catecholaminergic system [60], this
research should also investigate possible negative effects of
chronic glucagon administration such as changes in heart rate and
blood pressure.

The effect of acute glucagon administration on glucose
homoeostasis
The mean intervention effect of acute glucagon administration on
both glucose and insulin concentrations was large. The effect on
glucose concentrations is not surprising considering the well-
established role of glucagon in upregulating hepatic glucose
production via glycogenolysis [61]. Similarly, glucagon is known to
stimulate insulin release both directly (via activation of beta-cells
when glucose concentrations are high) and indirectly (via
increased glucose concentrations) [62, 63]. Despite most studies
reporting an increase in glucose and insulin following acute
glucagon administration, the magnitude of this increase varied
considerably between studies, resulting in a high degree of
statistical heterogeneity that could not be explained by differ-
ences in administration route or glucagon dose in our analyses. It
is important to note that the number of studies included in the
mixed-effects meta-regression analyses (13 and 12 for glucose and
insulin outcomes, respectively) was small. Therefore, when
considering the small number of studies and large degree of
statistical heterogeneity, a moderating effect of administration
route or glucagon dose on glucose and insulin responses cannot
be excluded as such analyses are likely inadequately powered to
detect small to moderate effects [64].
Nevertheless, the consistent increase observed in both insulin

and glucose concentrations across studies suggests that they are
unlikely to play any potential role in mediating the effects of
glucagon on appetite. It is also important to note that the state of
hyperglycaemia induced by acute glucagon administration may
increase cardiometabolic disease risk [65, 66]. It would therefore
seem prudent that any glucagon-based anti-obesity approach is
also capable of reducing glucose levels. This could be achieved by
a glucagon-like peptide 1 (GLP-1) co-agonist, or a molecule with
both GCGR and GLP-1 receptor activity [48].

Limitations
The present review is subject to several limitations. Firstly, several
of the outcomes (energy intake, energy expenditure, and
subjective appetite) were only measured by a small number of
studies, reducing the precision of summary effect estimates and
preventing the use of meta-regression analysis for exploring
causes of heterogeneity (e.g. glucagon dose). Secondly, energy
intake, glucose, and insulin outcomes showed considerable
heterogeneity in response, which was not explained by admin-
istration route or total glucagon dose for glucose and insulin
outcomes. Owing to the lack of studies to adequately detect
moderator effects, it therefore remains unclear what moderates
the response of these outcomes following acute glucagon
administration. Thirdly, possible publication bias was detected
for both glucose and insulin outcomes, suggesting that non-
significant findings may have not been published, and that the
effect estimates of the present review may be inflated. However,
trim-and-fill analyses indicate that that inclusion of theoretical
non-significant findings does not change the overall interpretation
of the acute effect of glucagon on these outcomes. The possible
presence of publication bias alongside large statistical hetero-
geneity for both glucose and insulin outcomes resulted in the
evidence being graded as low certainty. It should be noted that
this certainty relates to the precision of the effect estimate, not the

direction, as the data clearly shows that acute glucagon
administration increases both glucose and insulin concentrations.
Fourthly, the participants of included studies were predominantly
young (<35 years old) males, with less than half of eligible studies
being conducted in participants with a BMI ≥ 25.0. The findings of
the present analysis may therefore not be applicable to all
populations, particularly those more likely to be treated with anti-
obesity agents. Finally, the present analysis only focuses on acute
effects of glucagon administration on energy balance and glucose
homoeostasis, and thus any observed effects cannot be extra-
polated to chronic administration.

Summary
Overall, acute administration of glucagon in humans appears to
produce a marked rise in energy expenditure, glucose, and
insulin. However, statistical heterogeneity and potential publica-
tion bias reduce our confidence in the effect size estimates for
glucose and insulin responses. The effect of acute glucagon
administration on energy intake and subjective appetite also
remains unclear. Future work should look to clarify the effect of
acute glucagon administration on energy intake and appetite,
investigate any potential differences between acute and chronic
administration, and if needed, develop protocols that can sustain
acute beneficial effects such as increased expenditure over longer
time periods.
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