Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Associations of childhood BMI, general and visceral fat mass with metabolite profiles at school-age

Abstract

Background

Childhood obesity increases metabolic disease risk. Underlying mechanisms remain unknown. We examined associations of body mass index (BMI), total body fat mass, and visceral fat mass with serum metabolites at school-age, and explored whether identified metabolites improved the identification of children at risk of a metabolically unhealthy phenotype.

Methods

We performed a cross-sectional analysis among 497 children with a mean age of 9.8 (95% range 9.1, 10.6) years, participating in a population-based cohort study. We measured BMI, total body fat mass using DXA, and visceral fat mass using MRI. Serum concentrations of amino-acids, non-esterified-fatty-acids, phospholipids, and carnitines were determined using LC–MS/MS. Children were categorized as metabolically healthy or metabolically unhealthy, according to BMI, blood pressure, lipids, glucose, and insulin levels.

Results

Higher BMI and total body fat mass were associated with altered concentrations of branched-chain amino-acids, essential amino-acids, and free carnitines. Higher BMI was also associated with higher concentrations of aromatic amino-acids and alkyl-lysophosphatidylcholines (FDR-corrected p-values < 0.05). The strongest associations were present for Lyso.PC.a.C14.0 and SM.a.C32.2 (FDR-corrected p-values < 0.01). Higher visceral fat mass was only associated with higher concentrations of 6 individual metabolites, particularly Lyso.PC.a.C14.0, PC.aa.C32.1, and SM.a.C32.2. We selected 15 metabolites that improved the prediction of a metabolically unhealthy phenotype, compared to BMI only (AUC: BMI: 0.59 [95% CI 0.47,0.71], BMI + Metabolites: 0.91 [95% CI 0.85,0.97]).

Conclusions

An adverse childhood body fat profile, characterized by higher BMI and total body fat mass, is associated with metabolic alterations, particularly in amino acids, phospholipids, and carnitines. Fewer associations were present for visceral fat mass. We identified a metabolite profile that improved the identification of impaired cardiometabolic health in children, compared to BMI only.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations of childhood BMI and body composition with childhood serum metabolites.
Fig. 2: Receiving operating characteristics (ROC) curves for the prediction of a metabolically healthy or metabolically unhealthy childhood phenotype.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to privacy reasons but are available from the corresponding author upon reasonable request.

References

  1. Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7:231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147–52.

    Article  PubMed  Google Scholar 

  3. Vukovic R, Dos Santos TJ, Ybarra M, Atar M. Children with metabolically healthy obesity: a review. Front Endocrinol (Lausanne). 2019;10:865.

    Article  PubMed  Google Scholar 

  4. Handakas E, Lau CH, Alfano R, Chatzi VL, Plusquin M, Vineis P, et al. A systematic review of metabolomic studies of childhood obesity: state of the evidence for metabolic determinants and consequences. Obes Rev. 2022;23:e13384.

    Article  PubMed  Google Scholar 

  5. Prentice AM, Jebb SA. Beyond body mass index. Obes Rev. 2001;2:141–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kelishadi R, Mirmoghtadaee P, Najafi H, Keikha M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J Res Med Sci. 2015;20:294–307.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M, et al. Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation. 2016;134:1629–36.

    Article  CAS  PubMed  Google Scholar 

  8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31:1243–64.

    Article  PubMed  Google Scholar 

  9. Fredriks AM, van Buuren S, Wit JM, Verloove-Vanhorick SP. Body index measurements in 1996-7 compared with 1980. Arch Dis Child. 2000;82:107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94.

    Article  CAS  PubMed  Google Scholar 

  11. Gishti O, Gaillard R, Manniesing R, Abrahamse-Berkeveld M, van der Beek EM, Heppe DH, et al. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children. J Clin Endocrinol Metab. 2014;99:2557–66.

    Article  CAS  PubMed  Google Scholar 

  12. Santos S, Monnereau C, Felix JF, Duijts L, Gaillard R, Jaddoe VWV. Maternal body mass index, gestational weight gain, and childhood abdominal, pericardial, and liver fat assessed by magnetic resonance imaging. Int J Obes (Lond). 2019;43:581–93.

    Article  PubMed  Google Scholar 

  13. VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body’s fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990;52:953–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wells JC, Cole TJ, steam As. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes Relat Metab Disord. 2002;26:947–52.

    Article  CAS  PubMed  Google Scholar 

  15. Kruithof CJ, Kooijman MN, van Duijn CM, Franco OH, de Jongste JC, Klaver CC, et al. The generation R study: Biobank update 2015. Eur J Epidemiol. 2014;29:911–27.

    Article  CAS  PubMed  Google Scholar 

  16. Voerman E, Jaddoe VWV, Uhl O, Shokry E, Horak J, Felix JF, et al. A population-based resource for intergenerational metabolomics analyses in pregnant women and their children: the Generation R Study. Metabolomics. 2020;16:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hellmuth C, Uhl O, Standl M, Demmelmair H, Heinrich J, Koletzko B, et al. Cord blood metabolome is highly associated with birth weight, but less predictive for later weight development. Obes Facts. 2017;10:85–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations 1983. Eur J Biochem. 1984;138:9–37.

    Article  Google Scholar 

  19. Uhl O, Fleddermann M, Hellmuth C, Demmelmair H, Koletzko B. Phospholipid species in newborn and 4-month-old infants after consumption of different formulas or breast milk. PLoS One. 2016;11:e0162040.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hellmuth C, Weber M, Koletzko B, Peissner W. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem. 2012;84:1483–90.

    Article  CAS  PubMed  Google Scholar 

  21. Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8:663.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wong SN, Tz Sung RY, Leung LC. Validation of three oscillometric blood pressure devices against auscultatory mercury sphygmomanometer in children. Blood Press Monit. 2006;11:281–91.

    Article  PubMed  Google Scholar 

  23. Damanhoury S, Newton AS, Rashid M, Hartling L, Byrne JLS, Ball GDC. Defining metabolically healthy obesity in children: a scoping review. Obes Rev. 2018;19:1476–91.

    Article  CAS  PubMed  Google Scholar 

  24. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  25. Mansell T, Magnussen CG, Nuotio J, Laitinen TT, Harcourt BE, Bekkering S, et al. Decreasing severity of obesity from early to late adolescence and young adulthood associates with longitudinal metabolomic changes implicated in lower cardiometabolic disease risk. Int J Obes (Lond). 2022;46:646–54.

    Article  CAS  PubMed  Google Scholar 

  26. De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, Vanhaecke L. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol Med. 2021;27:145.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: chimeras in structure and function. Int J Mol Sci. 2022;23:11948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208:10–8.

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Fox CS, Hickson D, Bidulescu A, Carr JJ, Taylor HA. Fatty liver, abdominal visceral fat, and cardiometabolic risk factors: the Jackson Heart Study. Arterioscler Thromb Vasc Biol. 2011;31:2715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obes (Silver Spring). 2010;18:2191–8.

    Article  Google Scholar 

  31. Hu HH, Nayak KS, Goran MI. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obes Rev. 2011;12:e504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gishti O, Gaillard R, Durmus B, Abrahamse M, van der Beek EM, Hofman A, et al. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res. 2015;77:710–8.

    Article  PubMed  Google Scholar 

  33. Hiuge-Shimizu A, Kishida K, Funahashi T, Ishizaka Y, Oka R, Okada M, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med. 2012;44:82–92.

    Article  PubMed  Google Scholar 

  34. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  35. Papandreou C, García-Gavilán J, Camacho-Barcia L, Hansen TT, Sjödin A, Harrold JA, et al. Circulating metabolites associated with body fat and lean mass in adults with overweight/obesity. Metabolites. 2021;11:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, et al. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015;309:E736–46.

    Article  CAS  PubMed  Google Scholar 

  37. Boone S, Mook-Kanamori D, Rosendaal F, den Heijer M, Lamb H, de Roos A, et al. Metabolomics: a search for biomarkers of visceral fat and liver fat content. Metabolomics. 2019;15:139.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected]. PLoS One. 2013;8:e73445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodríguez-Carmona Y, Meijer JL, Zhou Y, Jansen EC, Perng W, Banker M, et al. Metabolomics reveals sex-specific pathways associated with changes in adiposity and muscle mass in a cohort of Mexican adolescents. Pediatr Obes. 2022;17:e12887.

    Article  PubMed  Google Scholar 

  40. van Beijsterveldt I, Snowden SG, Myers PN, de Fluiter KS, van de Heijning B, Brix S, et al. Metabolomics in early life and the association with body composition at age 2 years. Pediatr Obes. 2022;17:e12859.

    Article  PubMed  Google Scholar 

  41. do Prado WL, Josephson S, Cosentino RG, Churilla JR, Hossain J, Balagopal PB. Preliminary evidence of glycine as a biomarker of cardiovascular disease risk in children with obesity. Int J Obes (Lond). 2023;47:1023–6.

    Article  PubMed  Google Scholar 

  42. Cosentino RG, Churilla JR, Josephson S, Molle-Rios Z, Hossain MJ, Prado WL, et al. Branched-chain amino acids and relationship with inflammation in youth with obesity: a randomized controlled intervention study. J Clin Endocrinol Metab. 2021;106:3129–39.

    Article  PubMed  Google Scholar 

  43. Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta. 2012;1821:754–61.

    Article  CAS  PubMed  Google Scholar 

  44. Furse S, de Kroon AI. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol. 2015;32:117–9.

    Article  CAS  PubMed  Google Scholar 

  45. Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. Pediatr Endocrinol Rev. 2012;10:130–9.

    PubMed  PubMed Central  Google Scholar 

  46. Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes. 2009;16:10–5.

    Article  CAS  PubMed  Google Scholar 

  47. Goulding A, Taylor RW, Gold E, Lewis-Barned NJ. Regional body fat distribution in relation to pubertal stage: a dual-energy X-ray absorptiometry study of New Zealand girls and young women. Am J Clin Nutr. 1996;64:546–51.

    Article  CAS  PubMed  Google Scholar 

  48. Roemmich JN, Clark PA, Lusk M, Friel A, Weltman A, Epstein LH, et al. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release. Int J Obes Relat Metab Disord. 2002;26:701–9.

    Article  CAS  PubMed  Google Scholar 

  49. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, et al. Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab. 2010;95:5189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng D, Zhao X, Yang S, Cui H, Wang G. Metabolomic signature between metabolically healthy overweight/obese and metabolically unhealthy overweight/obese: a systematic review. Diabetes Metab Syndr Obes. 2021;14:991–1010.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.

    Article  CAS  PubMed  Google Scholar 

  52. Fatima S, Hu X, Gong RH, Huang C, Chen M, Wong HLX, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76:2547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The relationship between branched-chain amino acid-related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res. 2016;2016:2794591.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306:E1378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hellmuth C, Kirchberg FF, Brandt S, Moß A, Walter V, Rothenbacher D, et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children. Sci Rep. 2019;9:5053.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rzehak P, Hellmuth C, Uhl O, Kirchberg FF, Peissner W, Harder U, et al. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0). Ann Nutr Metab. 2014;64:294–303.

    Article  PubMed  Google Scholar 

  57. Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101:871–9.

    Article  CAS  PubMed  Google Scholar 

  58. van Valkengoed IGM, Argmann C, Ghauharali-van der Vlugt K, Aerts J, Brewster LM, Peters RJG, et al. Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin. Nutr Diabetes. 2017;7:300.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li-Gao R, Hughes DA, le Cessie S, de Mutsert R, den Heijer M, Rosendaal FR, et al. Assessment of reproducibility and biological variability of fasting and postprandial plasma metabolite concentrations using 1H NMR spectroscopy. PLoS One. 2019;14:e0218549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37:1944–58.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Keirns BH, Sciarrillo CM, Koemel NA, Emerson SR. Fasting non-fasting and postprandial triglycerides for screening cardiometabolic risk. J Nutr Sci. 2021;10:e75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benn M, Tybjaerg-Hansen A, McCarthy MI, Jensen GB, Grande P, Nordestgaard BG. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a Mendelian randomization study. J Am Coll Cardiol. 2012;59:2356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. DeBoer MD, Filipp SL, Gurka MJ. Associations of a metabolic syndrome severity score with coronary heart disease and diabetes in fasting vs. non-fasting individuals. Nutr Metab Cardiovasc Dis. 2020;30:92–8.

    Article  PubMed  Google Scholar 

  64. Vajravelu ME, Hirschfeld E, Gebremariam A, Burant CF, Herman WH, Peterson KE, et al. Prospective test performance of nonfasting biomarkers to identify dysglycemia in children and adolescents. Horm Res Paediatr. 2023;96:316–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of participating mothers, general practitioners, hospitals, midwives, and pharmacies in Rotterdam. The Generation R Study is financially supported by the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, and the Netherlands Organization for Health Research and Development. RG received funding from the Netherlands Organization for Health Research and Development (NWO, ZonMW 05430052110007; NWO, ZonMw VIDI 09150172110034). VWVJ received a grant from the Netherlands Organization for Health Research and Development (NWO, ZonMw 05430052110007) and a European Research Council Consolidator Grant (ERC-2014-CoG-648916). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the ERA-NET Cofund action (No. 727565), European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL), EndObesity, ZonMW Netherlands (No. 529051026), JPI HDHL BiomarKids, and the German Ministry of Education and Research, Berlin (01EA2101 and 01EA2203A). BK is the Else Kröner Senior Professor of Paediatrics at LMU – University of Munich, financially supported by the charitable Else Kröner-Fresenius-Foundation, LMU Medical Faculty, and LMU University Hospitals.

Author information

Authors and Affiliations

Authors

Contributions

The author’s responsibilities were as follows. MS, RG, and VJ designed research; MS, RG, and SB conducted research; MS and SB analyzed data; and MS and RG wrote the paper. MS and RG had primary responsibility for the final content. VJ, EO, BK, and SB, critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Romy Gaillard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schipper, M.C., Blaauwendraad, S.M., Koletzko, B. et al. Associations of childhood BMI, general and visceral fat mass with metabolite profiles at school-age. Int J Obes 48, 1307–1317 (2024). https://doi.org/10.1038/s41366-024-01558-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-024-01558-8

Search

Quick links