Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

DACRA induces profound weight loss, satiety control, and increased mitochondrial respiratory capacity in adipose tissue

Abstract

Background and objectives

Dual amylin and calcitonin receptor agonists (DACRAs) are therapeutic candidates in the treatment of obesity with beneficial effects on weight loss superior to suppression of food intake. Hence, suggesting effects on energy expenditure by possibly targeting mitochondria in metabolically active tissue.

Methods

Male rats with HFD-induced obesity received a DACRA, KBP-336, every third day for 8 weeks. Upon study end, mitochondrial respiratory capacity (MRC), - enzyme activity, - transcriptional factors, and -content were measured in perirenal (pAT) and inguinal adipose tissue. A pair-fed group was included to examine food intake-independent effects of KBP-336.

Results

A vehicle-corrected weight loss (23.4 ± 2.8%) was achieved with KBP-336, which was not observed to the same extent with the food-restricted weight loss (12.4 ± 2.8%) (P < 0.001). Maximal coupled respiration supported by carbohydrate and lipid-linked substrates was increased after KBP-336 treatment independent of food intake in pAT (P < 0.01). Moreover, oligomycin-induced leak respiration and the activity of citrate synthase and β-hydroxyacetyl-CoA-dehydrogenase were increased with KBP-336 treatment (P < 0.05). These effects occurred without changes in mitochondrial content in pAT.

Conclusions

These findings demonstrate favorable effects of KBP-336 on MRC in adipose tissue, indicating an increased energy expenditure and capacity to utilize fatty acids. Thus, providing more mechanistic insight into the DACRA-induced weight loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in body weight, food intake, and adiposity.
Fig. 2: Mitochondrial respiratory capacity in adipose tissue.
Fig. 3: Mitochondrial enzyme activity, - transcriptional factors, and - content in adipose tissue.

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current studies are available from the corresponding author on reasonable request.

References

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  2. Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, et al. Obesity in adults: a clinical practice guideline. C. Can Med Assoc J. 2020;192:E875–91.

    Article  Google Scholar 

  3. Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. 2023;58:101882.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Christoffersen BØ, Sanchez-Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity. 2022;30:841–57.

    Article  PubMed  Google Scholar 

  5. Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol. 2020;11:617400.

    Article  Google Scholar 

  6. Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI insight. 2020;5:e133429.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knop FK, Aroda VR, do Vale RD, Holst-Hansen T, Laursen PN, Rosenstock J, et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;402:705–19.

    Article  CAS  PubMed  Google Scholar 

  8. Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, Gurbuz S, et al. Triple-Hormone-Receptor Agonist Retatrutide for Obesity - A Phase 2 Trial. N Engl J Med. 2023;389:514–26.

    Article  CAS  PubMed  Google Scholar 

  9. Lau DCW, Erichsen L, Francisco AM, Satylganova A, le Roux CW, McGowan B, et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet. 2021;398:2160–72.

    Article  CAS  PubMed  Google Scholar 

  10. Enebo LB, Berthelsen KK, Kankam M, Lund MT, Rubino DM, Satylganova A, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet. 2021;397:1736–48.

    Article  CAS  PubMed  Google Scholar 

  11. Andreassen KV, Larsen AT, Sonne N, Mohamed KE, Karsdal MA, Henriksen K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol Metab. 2021;53:101282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larsen AT, Mohamed KE, Sonne N, Bredtoft E, Andersen F, Karsdal MA, et al. Does receptor balance matter? - Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother. 2022;156:113842.

    Article  CAS  PubMed  Google Scholar 

  13. Gydesen S, Andreassen KV, Hjuler ST, Christensen JM, Karsdal MA, Henriksen K. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am J Physiol Endocrinol Metab. 2016;310:E821–7.

    Article  PubMed  Google Scholar 

  14. Larsen AT, Sonne N, Andreassen KV, Gehring K, Karsdal MA, Henriksen K. The Dual Amylin and Calcitonin Receptor Agonist KBP-088 Induces Weight Loss and Improves Insulin Sensitivity Superior to Chronic Amylin Therapy. J Pharm Exp Ther. 2019;370:35–43.

    Article  CAS  Google Scholar 

  15. Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J Pharm Exp Ther. 2020;374:74–83.

    Article  CAS  Google Scholar 

  16. Hjuler ST, Gydesen S, Andreassen KV, Pedersen SLK, Hellgren LI, Karsdal MA, et al. The dual amylin- and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity. 2016;24:1712–22.

    Article  CAS  PubMed  Google Scholar 

  17. Gydesen S, Hjuler ST, Freving Z, Andreassen KV, Sonne N, Hellgren LI, et al. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br J Pharm. 2017;174:591–602.

    Article  CAS  Google Scholar 

  18. Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, et al. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci. 2022;23:8852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165838.

    Article  CAS  PubMed  Google Scholar 

  20. Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol. 2013;169:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharm Toxicol. 2015;55:207–27.

    Article  CAS  Google Scholar 

  22. Cai J, Wang F, Shao M. The Emerging Importance of Mitochondria in White Adipocytes: Neither Last nor Least. Endocrinol Metab. 2023;38:493–503.

    Article  CAS  Google Scholar 

  23. Lee JH, Park A, Oh K-J, Lee SC, Kim WK, Bae K-H. The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. Int J Mol Sci. 2019;20:4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev J Int Assoc Study Obes. 2020;21:e12958.

    Article  Google Scholar 

  25. Thorsø Larsen A, Karsdal MA, Henriksen K. Treatment sequencing using the dual amylin and calcitonin receptor agonist KBP-336 and semaglutide results in durable weight loss. Eur J Pharm. 2023;954:175837.

    Article  Google Scholar 

  26. Larsen S, Danielsen JH, Søndergård SD, Søgaard D, Vigelsoe A, Dybboe R, et al. The effect of high-intensity training onmitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports. 2015;25:59–69.

    Article  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt SF, Madsen JGS, Frafjord KØ, Poulsen LL, Salö S, Boergesen M, et al. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORγ Axis Regulating Proliferation in β Cells. Cell Rep. 2016;16:2359–72.

    Article  CAS  PubMed  Google Scholar 

  29. Sutherland LN, Capozzi LC, Turchinsky NJ, Bell RC, Wright DC. Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: potential mechanisms and the relationship to glucose intolerance. Am J Physiol Endocrinol Metab. 2008;295:E1076–83.

    Article  CAS  PubMed  Google Scholar 

  30. Kraunsøe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Støckel M, et al. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol. 2010;588:2023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thrush AB, Dent R, McPherson R, Harper M-E. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity. FEBS J. 2013;280:5015–29.

    Article  CAS  PubMed  Google Scholar 

  32. Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, et al. Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1855–63.

    Article  CAS  PubMed  Google Scholar 

  33. Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM. Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology. 2006;147:5855–64.

    Article  CAS  PubMed  Google Scholar 

  34. Wielinga PY, Löwenstein C, Muff S, Munz M, Woods SC, Lutz TA. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav. 2010;101:45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Osaka T, Tsukamoto A, Koyama Y, Inoue S. Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides. 2008;29:1028–35.

    Article  CAS  PubMed  Google Scholar 

  36. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.

    Article  CAS  PubMed  Google Scholar 

  37. Góralska J, Śliwa A, Gruca A, Raźny U, Chojnacka M, Polus A, et al. Glucagon-like peptide-1 receptor agonist stimulates mitochondrial bioenergetics in human adipocytes. Acta Biochim Pol. 2017;64:423–9.

    Article  PubMed  Google Scholar 

  38. Coester B, Koester-Hegmann C, Lutz TA, Le Foll C. Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice. Diabetes. 2020;69:1110–25.

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Liang J, Tian X, Chen Q, Zhu L, Wang H, et al. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br J Nutr. 2023;130:1473–86.

    Article  CAS  PubMed  Google Scholar 

  40. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000;406:415–8.

    Article  CAS  PubMed  Google Scholar 

  41. Childress ES, Alexopoulos SJ, Hoehn KL, Santos WL. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J Med Chem. 2018;61:4641–55.

    Article  CAS  PubMed  Google Scholar 

  42. Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol J Am Coll Med Toxicol. 2011;7:205–12.

    CAS  Google Scholar 

  43. Löffler MC, Betz MJ, Blondin DP, Augustin R, Sharma AK, Tseng Y-H, et al. Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Mol Metab. 2021;51:101237.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schöttl T, Kappler L, Fromme T, Klingenspor M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol Metab. 2015;4:631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murholm M, Dixen K, Qvortrup K, Hansen LHL, Amri E-Z, Madsen L, et al. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment. PLoS One. 2009;4:e8458.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dahlman I, Forsgren M, Sjögren A, Nordström EA, Kaaman M, Näslund E, et al. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha. Diabetes. 2006;55:1792–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med. 2020;7:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Esteve Ràfols M. Adipose tissue: cell heterogeneity and functional diversity. Endocrinol y Nutr organo la Soc Esp Endocrinol y Nutr. 2014;61:100–12.

    Google Scholar 

  49. Sorensen M, Sanz A, Gómez J, Pamplona R, Portero-Otín M, Gredilla R, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006;40:339–47.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Santos RX, Cardoso S, Silva S, Correia S, Carvalho C, Crisóstomo J, et al. Food deprivation promotes oxidative imbalance in rat brain. J Food Sci. 2009;74:H8–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Emilie A. Petersen designed and performed the animal study, performed analyses, and wrote the manuscript. Ida Blom, Simone A. Melander, Mays Al-Rubai, Marina Vidotto, and Louise T. Dalgaard performed analyses. Morten A. Karsdal assisted with study design and data interpretation. Kim Henriksen, Steen Larsen, and Anna T. Larsen: assisted with study design, data interpretation, and manuscript writing. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Emilie A. Petersen.

Ethics declarations

Competing interests

We acknowledge the Danish Innovation Foundation and The Danish Research Foundation for funding. MAK and KH own stock in Nordic Bioscience A/S. EAP, ATL, MAK, and KH are employed by Nordic Bioscience A/S.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, E.A., Blom, I., Melander, S.A. et al. DACRA induces profound weight loss, satiety control, and increased mitochondrial respiratory capacity in adipose tissue. Int J Obes 48, 1421–1429 (2024). https://doi.org/10.1038/s41366-024-01564-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-024-01564-w

Search

Quick links