Abstract
The escalating global obesity crisis and its associated metabolic disorders have posed a significant threat to public health, increasing the risk of major health issues such as cardiovascular diseases and type 2 diabetes. Central to metabolic regulation are the liver and brown adipose tissue (BAT), which orchestrate glycolipid metabolism, thermogenesis, and energy homeostasis. Emerging evidence highlights the role of natural bioactive compounds-such as polyphenols (e.g., resveratrol, curcumin), alkaloids (e.g., berberine), and terpenoids (e.g., paeoniflorin, shikonin)-in modulating liver-BAT crosstalk. These compounds influence critical pathways, including AMPK activation, PPAR signaling, and UCP1-mediated thermogenesis, to enhance lipid oxidation, suppress gluconeogenesis, and improve insulin sensitivity. This review systematically examines how these natural agents regulate metabolic interplay between the liver and BAT, addressing their effects on energy expenditure, carbohydrate utilization, and lipid mobilization. Key mechanisms involve the suppression of hepatic lipogenesis, promotion of BAT-mediated thermogenesis, and secretion of hepatokines (e.g., FGF21) and batokines that coordinate interorgan communication. By synthesizing preclinical and clinical findings, we highlight the translational potential of dietary interventions and nutraceuticals targeting liver-BAT axis dysfunction. Future research should prioritize mechanistic studies, dose optimization, and personalized approaches to harness these compounds for combating obesity-related diseases. These insights underscore the promise of natural bioactive molecules as adjuvants to lifestyle modifications, offering innovative strategies for metabolic health restoration.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Priest C, Tontonoz P. Inter-organ cross-talk in metabolic syndrome. Nat Metab. 2019;1:1177–88. https://doi.org/10.1038/s42255-019-0145-5.
Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62. https://doi.org/10.1146/annurev.med.56.082103.104751.
Wallace M, Metallo CM. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol. 2020;108:65–71. https://doi.org/10.1016/j.semcdb.2020.02.012.
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med. 2016;14:3. https://doi.org/10.1186/s12967-015-0762-z.
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. https://doi.org/10.1152/physrev.00063.2017.
Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13:26–35. https://doi.org/10.1038/nrendo.2016.136.
Eng JM, Estall JL. Diet-induced models of non-alcoholic fatty liver disease : food for thought on sugar, fat, and cholesterol. Cells. 2021;10:16. https://doi.org/10.3390/cells10071805.
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol. 2017;91:1545–63. https://doi.org/10.1007/s00204-016-1892-7.
Lee WH, Kim SG. AMPK-dependent metabolic regulation by PPAR agonists. PPAR Res. 2010. https://doi.org/10.1155/2010/549101.
Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, Sluse-Goffart CM. Mitochondrial UCPs: new insights into regulation and impact. Biochim Biophys Acta. 2006;1757:480–85. https://doi.org/10.1016/j.bbabio.2006.02.004.
Boss O, Hagen T, Lowell BB. Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes. 2000;49:143–56. https://doi.org/10.2337/diabetes.49.2.143.
Pateiro M, Dominguez R, Varzakas T, Munekata P, Movilla FE, Lorenzo JM. Omega-3-rich oils from marine side streams and their potential application in food. Mar Drugs. 2021;19. https://doi.org/10.3390/md19050233.
Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, et al. Adenylate kinase and metabolic signaling in cancer cells. Front Oncol. 2020;10:660. https://doi.org/10.3389/fonc.2020.00660.
Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia. 2013;56:204–17. https://doi.org/10.1007/s00125-012-2747-2.
Neto JGO, Boechat SK, Romao JS, Kuhnert LRB, Pazos-Moura CC, Oliveira KJ. Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity. Food Funct. 2022;13:3405–18. https://doi.org/10.1039/d1fo03871k.
Ma P, Li X, Wang Y, Lang D, Liu L, Yi Y, et al. Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res. 2022;178. https://doi.org/10.1016/j.phrs.2022.106175.
Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25:1–18. https://doi.org/10.1016/j.jnutbio.2013.09.001.
Moore M, Cunningham R, Moore AN, Healy JC, Roberts MD, Rector S, et al. Curcumin supplementation mitigates NASH development and progression in female wistar rats. Med Sci Sports Exerc. 2018;50:724.
Yuan Y, Pan F, Zhu Z, Yang Z, Wang O, Li Q, et al. Construction of a QSAR model based on flavonoids and screening of natural pancreatic lipase inhibitors. Nutrients. 2023;15. https://doi.org/10.3390/nu15153489.
Jin X, Xiang Z, Chen YP, Ma KF, Ye YF, Li YM. Uncoupling protein and nonalcoholic fatty liver disease. Chin Med J. 2013;126:3151–55. https://doi.org/10.3760/cma.j.issn.0366-6999.20130940.
Lee JH, Park A, Oh K, Lee SC, Kim WK, Bae K. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20194924.
Quesada-Lopez T, Cereijo R, Turatsinze J, Planavila A, Cairo M, Gavalda-Navarro A, et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms13479.
Bond LM, Ntambi JM. UCP1 deficiency increases adipose tissue monounsaturated fatty acid synthesis and trafficking to the liver. J Lipid Res. 2018;59:224–36. https://doi.org/10.1194/jlr.M078469.
Shen H, Jiang L, Lin JD, Omary MB, Rui L. Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J Clin Invest. 2019;129:2305–17. https://doi.org/10.1172/JCI124376.
Ma B, Hao J, Xu H, Liu L, Wang W, Chen S, et al. Rutin promotes white adipose tissue “browning” and brown adipose tissue activation partially through the calmodulin-dependent protein kinase kinase β/AMP- activated protein kinase pathway. Endocr J. 2021. https://doi.org/10.1507/endocrj.EJ21-0441.
Qi G, Zhou Y, Zhang X, Yu J, Li X, Cao X, et al. Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharm Sin B. 2019;9:135–43. https://doi.org/10.1016/j.apsb.2018.10.004.
Cheng L, Wang J, An Y, Dai H, Duan Y, Shi L, et al. Mulberry leaf activates brown adipose tissue and induces browning of inguinal white adipose tissue in type 2 diabetic rats through regulating AMP-activated protein kinase signalling pathway. Br J Nutr. 2022;127:810–22. https://doi.org/10.1017/S0007114521001537.
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zogg T, et al. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. Sci Adv. 2023;9:13 https://doi.org/10.1126/sciadv.adh4251.
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Gruszczyk A, Bradshaw GA, et al. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab. 2022;34:140 https://doi.org/10.1016/j.cmet.2021.11.003.
Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life. 2001;52:181–88. https://doi.org/10.1080/15216540152845984.
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab. 2021;3:604 https://doi.org/10.1038/s42255-021-00389-5.
Edvardsson U, Bergstrom M, Alexandersson M, Bamberg K, Ljung B, Dahllof B. Rosiglitazone (BRL49653), a PPARgamma-selective agonist, causes peroxisome proliferator-like liver effects in obese mice. J Lipid Res. 1999;40:1177–84.
Song Z, Xiaoli AM, Zhang Q, Zhang Y, Yang EST, Wang S, et al. Cyclin c regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer-binding protein α. J Biol Chem. 2017;292:8918–32. https://doi.org/10.1074/jbc.M117.776229.
Han H, Chung K, Shin Y, Lee SH, Lee K. Standardized hydrangea serrata (thunb.) Ser. Extract ameliorates obesity in db/db mice. Nutrients. 2021;13. https://doi.org/10.3390/nu13103624.
Heo S, Chung K, Yoon Y, Kim S, Ahn H, Shin Y, et al. Standardized ethanol extract of cassia mimosoides var. nomame makino ameliorates obesity via regulation of adipogenesis and lipogenesis in 3t3-l1 cells and high-fat diet-induced obese mice. Nutrients. 2023;15. https://doi.org/10.3390/nu15030613.
Kang NH, Mukherjee S, Yun JW. Trans-cinnamic acid stimulates white fat browning and activates brown adipocytes. Nutrients. 2019;11. https://doi.org/10.3390/nu11030577.
Liu X, Huang Y, Liang X, Wu Q, Wang N, Zhou L, et al. Atractylenolide III from atractylodes macrocephala koidz promotes the activation of brown and white adipose tissue through SIRT1/PGC-1α signaling pathway. Phytomedicine. 2022;104. https://doi.org/10.1016/j.phymed.2022.154289.
Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014;5. https://doi.org/10.1038/ncomms6493.
Tamura Y, Tomiya S, Takegaki J, Kouzaki K, Tsutaki A, Nakazato K. Apple polyphenols induce browning of white adipose tissue. J Nutr Biochem. 2020;77. https://doi.org/10.1016/j.jnutbio.2019.108299.
Chen L, Chien Y, Liang C, Chan C, Fan M, Huang H. Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat. Food Nutr Res. 2017;61. https://doi.org/10.1080/16546628.2017.1347480.
Bartlett K, Eaton S. Mitochondrial β-oxidation. Eur J Biochem. 2004;271:462–69. https://doi.org/10.1046/j.1432-1033.2003.03947.x.
Motojima K. Peroxisome proliferator-activated receptor (PPAR): structure, mechanisms of activation and diverse functions. Cell Struct Funct. 1993;18:267–77. https://doi.org/10.1247/csf.18.267.
Sun Y, Zhang L, Jiang Z. The role of peroxisome proliferator-activated receptors in the regulation of bile acid metabolism. Basic Clin Pharm Toxicol. 2024;134:315–24. https://doi.org/10.1111/bcpt.13971.
Zhao Y, Ma D, Wang H, Li M, Talukder M, Wang H, et al. Lycopene prevents DEHP-induced liver lipid metabolism disorder by inhibiting the HIF-1α-induced PPARα/PPARγ/FXR/LXR system. J Agric Food Chem. 2020;68:11468–79. https://doi.org/10.1021/acs.jafc.0c05077.
Wang X, Shi L, Joyce S, Wang Y, Feng Y. MDG-1, a potential regulator of PPAR and PPAR, ameliorates dyslipidemia in mice. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18091930.
Li X, Yao Y, Yu C, Wei T, Xi Q, Li J, et al. Modulation of PPARα-thermogenesis gut microbiota interactions in obese mice administrated with zingerone. J Sci Food Agric. 2023;103:3065–76. https://doi.org/10.1002/jsfa.12352.
Zhao Y, Li X, Yang L, Eckel-Mahan K, Tong Q, Gu X, et al. Transient overexpression of vascular endothelial growth factor a in adipose tissue promotes energy expenditure via activation of the sympathetic nervous system. Mol Cell Biol. 2018;38. https://doi.org/10.1128/MCB.00242-18.
Cheng L, Zhang S, Shang F, Ning Y, Huang Z, He R, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue. Front Endocrinol. 2021;12:618037 https://doi.org/10.3389/fendo.2021.618037.
Naiman S, Huynh FK, Gil R, Glick Y, Shahar Y, Touitou N, et al. SIRT6 promotes hepatic beta-oxidation via activation of PPARα. Cell Rep. 2019;29:4127. https://doi.org/10.1016/j.celrep.2019.11.067.
Shin KC, Huh JY, Ji Y, Han JS, Han SM, Park J, et al. VLDL-VLDLR axis facilitates brown fat thermogenesis through replenishment of lipid fuels and PPAR?/? Activation. Cell Rep. 2022;41. https://doi.org/10.1016/j.celrep.2022.111806.
Sanderson LM, Boekschoten MV, Desvergne B, Mueller M, Kersten S. Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver. Physiol Genomics. 2010;41:42–52. https://doi.org/10.1152/physiolgenomics.00127.2009.
Goudarzi M, Koga T, Khozoie C, Mak TD, Kang B, Fornace AJ Jr, et al. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity. Toxicology. 2013;311:87–98. https://doi.org/10.1016/j.tox.2013.07.002.
Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147. https://doi.org/10.1053/j.gastro.2016.01.038.
Hunt M, Lindquist PJ, Nousiainen S, Svensson TL, Diczfalusy U, Alexson SE. Cloning and regulation of peroxisome proliferator-induced acyl-CoA thioesterases from mouse liver. Adv Exp Med Biol. 1999;466:195–200.
Zhang Q, Liang X. Effects of mitochondrial dysfunction via AMPK/PGC-1α signal pathway on pathogenic mechanism of diabetic peripheral neuropathy and the protective effects of chinese medicine. Chin J Integr Med. 2019;25:386–94. https://doi.org/10.1007/s11655-018-2579-0.
Zheng Y, Liu T, Wang Z, Xu Y, Zhang Q, Luo D. Low molecular weight fucoidan attenuates liver injury via SIRTI/AMPK/PGC1α axis in db/db mice. Int J Biol Macromol. 2018;112:929–36. https://doi.org/10.1016/j.ijbiomac.2018.02.072.
Poornima MS, Sindhu G, Billu A, Sruthi CR, Nisha P, Gogoi P, et al. Pretreatment of hydroethanolic extract of dillenia indica l. Attenuates oleic acid induced NAFLD in HepG2 cells via modulating SIRT-1/p-LKB-1/AMPK, HMGCR & PPAR-α signaling pathways. J Ethnopharmacol. 2022;292:115237 https://doi.org/10.1016/j.jep.2022.115237.
Marcondes-de-Castro IA, Reis-Barbosa PH, Marinho TS, Aguila MB, Mandarim-de-Lacerda CA. AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression. J Gastroenterol Hepatol. 2023;38:1868–76. https://doi.org/10.1111/jgh.16272.
Yan L, Zhang S, Luo G, Cheng BC, Zhang C, Wang Y, et al. Schisandrin b mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism. 2022;131. https://doi.org/10.1016/j.metabol.2022.155200.
Yau WW, Singh BK, Lesmana R, Zhou J, Sinha RA, Wong KA, et al. Thyroid hormone (t3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15:131–50. https://doi.org/10.1080/15548627.2018.1511263.
Molina E, Hong L, Chefetz I. AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J Mol Med. 2021;99:651–62. https://doi.org/10.1007/s00109-021-02040-y.
Kumar F, Tyagi PK, Mir NA, Dev K, Begum J, Biswas A, et al. Dietary flaxseed and turmeric is a novel strategy to enrich chicken meat with long chain ω-3 polyunsaturated fatty acids with better oxidative stability and functional properties. Food Chem. 2020;305:125458 https://doi.org/10.1016/j.foodchem.2019.125458.
Chen L, Shen T, Zhang CP, Xu BL, Qiu YY, Xie XY, et al. Quercetin and isoquercitrin inhibiting hepatic gluconeogenesis through LKB1-AMPKα pathway. Acta Endocrinol. 2020;16:9–14. https://doi.org/10.4183/aeb.2020.9.
Jung Y, Park J, Kim H, Sim J, Youn D, Kang J, et al. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2018;32:1388–402. https://doi.org/10.1096/fj.201700231RR.
Gwon SY, Ahn J, Jung CH, Moon B, Ha T. Shikonin attenuates hepatic steatosis by enhancing beta oxidation and energy expenditure via AMPK activation. Nutrients. 2020;12. https://doi.org/10.3390/nu12041133.
Kim H, Park J, Jung Y, Ahn KS, Um J. Platycodin d, a novel activator of AMP-activated protein kinase, attenuates obesity in db/db mice via regulation of adipogenesis and thermogenesis. Phytomedicine. 2019;52:254–63. https://doi.org/10.1016/j.phymed.2018.09.227.
Park J, Kim H, Jung Y, Ahn KS, Kwak HJ, Um J. Bitter orange (citrus aurantium linne) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients. 2019;11. https://doi.org/10.3390/nu11091988.
Zou T, Wang B, Li S, Liu Y, You J. Dietary apple polyphenols promote fat browning in high-fat diet-induced obese mice through activation of adenosine monophosphate-activated protein kinase α. J Sci Food Agric. 2020;100:2389–98. https://doi.org/10.1002/jsfa.10248.
Zhang F, Ai W, Hu X, Meng Y, Yuan C, Su H, et al. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet. Food Funct. 2018;9:2043–50. https://doi.org/10.1039/c7fo01817g.
Kang J, Park J, Park WY, Jiao W, Lee S, Jung Y, et al. A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res. 2020;158. https://doi.org/10.1016/j.phrs.2020.104852.
Kong L, Xu M, Yang L, Liu S, Zheng G. smilax china polyphenols stimulate browning via β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3t3-l1 adipocytes. Am J Chin Med. 2022;50:1315–29. https://doi.org/10.1142/S0192415X22500550.
Hankir MK, Klingenspor M Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 2018;19. https://doi.org/10.15252/embr.201846404.
Stack TMM, Gerlt JA. Discovery of novel pathways for carbohydrate metabolism. Curr Opin Chem Biol. 2021;61:63–70. https://doi.org/10.1016/j.cbpa.2020.09.005.
Zhang Y, Xu G, Huang B, Chen D, Ye R. Astragaloside IV regulates insulin resistance and inflammatory response of adipocytes via modulating CTRP3 and PI3k/AKT signaling. Diabetes Ther. 2022;13:1823–34. https://doi.org/10.1007/s13300-022-01312-1.
Gao S, Feng Q. The beneficial effects of geniposide on glucose and lipid metabolism: a review. Drug Des Dev Ther. 2022;16:3365–83. https://doi.org/10.2147/DDDT.S378976.
Lv L, Wu S, Wang G, Zhang J, Pang J, Liu Z, et al. Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Phytother Res. 2010;24:219–24. https://doi.org/10.1002/ptr.2915.
Wu S, Wang G, Liu Z, Rao J, L Lue, Xu W, et al. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharm Sin. 2009;30:202–08. https://doi.org/10.1038/aps.2008.17.
Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13:572–87. https://doi.org/10.1038/nrendo.2017.80.
Montanari T, Poscic N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev. 2017;18:495–513. https://doi.org/10.1111/obr.12520.
Thounaojam MC, Jadeja RN, Ramani UV, Devkar RV, Ramachandran AV. sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed c57BL/6j mice and retards in vitro 3t3l1 pre-adipocyte differentiation. Int J Mol Sci. 2011;12:4661–77. https://doi.org/10.3390/ijms12074661.
Faria DDP, Vera CCDS, Marques FLN, Sapienza MT. Repeatability of brown adipose tissue activation measured by [18f]FDG PET after beta3-adrenergic stimuli in a mouse model. Nucl Med Biol. 2023;126:108390 https://doi.org/10.1016/j.nucmedbio.2023.108390.
Wang Y, Liu G, Liu X, Chen M, Zeng Y, Li Y, et al. Serpentine enhances insulin regulation of blood glucose through insulin receptor signaling pathway. Pharmaceuticals. 2023;16. https://doi.org/10.3390/ph16010016.
Jung JW, Kim JE, Kim E, Lee H, Lee H, Shin E, et al. Liver-originated small extracellular vesicles with TM4SF5 target brown adipose tissue for homeostatic glucose clearance. J Extracell Vesicles. 2022;11. https://doi.org/10.1002/jev2.12262.
Chong MF, Fielding BA, Frayn KN. Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc. 2007;66:52–59. https://doi.org/10.1017/S0029665107005290.
Hsiao W, Guertin DA. De novo lipogenesis as a source of second messengers in adipocytes. Curr Diab Rep. 2019;19. https://doi.org/10.1007/s11892-019-1264-9.
Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest. 2020;130:1453–60. https://doi.org/10.1172/JCI134165.
Lundgren P, Sharma PV, Dohnalova L, Coleman K, Uhr GT, Kircher S, et al. A subpopulation of lipogenic brown adipocytes drives thermogenic memory. Nat Metab. 2023;5:1691 https://doi.org/10.1038/s42255-023-00893-w.
Calejman CM, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W, et al. MTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-020-14430-w.
Sanchez-Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Calejman CM, Gujja S, et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 2018;27:195. https://doi.org/10.1016/j.cmet.2017.10.008.
Zadravec D, Brolinson A, Fisher RM, Carneheim C, Csikasz RI, Bertrand-Michel J, et al. Ablation of the very-long-chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet-induced obesity. FASEB J. 2010;24:4366–77. https://doi.org/10.1096/fj.09-152298.
Guilherme A, Pedersen DJ, Henchey E, Henriques FS, Danai LV, Shen Y, et al. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Mol Metab. 2017;6:781–96. https://doi.org/10.1016/j.molmet.2017.05.012.
Ahn H, Go G. pinus densiflora bark extract (PineXol) decreases adiposity in mice by down-regulation of hepatic de novo lipogenesis and adipogenesis in white adipose tissue. J Microbiol Biotechnol. 2017;27:660–67. https://doi.org/10.4014/jmb.1612.12037.
Kuipers EN, van Dam AD, Held NM, Mol IM, Houtkooper RH, Rensen PCN, et al. Quercetin lowers plasma triglycerides accompanied by white adipose tissue browning in diet-induced obese mice. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19061786.
Park H, Liu Y, Kim H, Shin J. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr Res. 2016;36:57–64. https://doi.org/10.1016/j.nutres.2015.10.010.
Simcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, Miao R, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab. 2017;26:509. https://doi.org/10.1016/j.cmet.2017.08.006.
Yu W, Gao Y, Zhao Z, Long X, Yi Y, Ai S. Fumigaclavine c ameliorates liver steatosis by attenuating hepatic de novo lipogenesis via modulation of the RhoA/ROCK signaling pathway. BMC Complement Med Ther. 2023;23. https://doi.org/10.1186/s12906-023-04110-9.
Cui C, Deng J, Yan L, Liu Y, Fan J, Mu H, et al. Silibinin capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. J Ethnopharmacol. 2017;208:24–35. https://doi.org/10.1016/j.jep.2017.06.030.
Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab. 2015;308:E1043–55. https://doi.org/10.1152/ajpendo.00570.2014.
Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in c57BL6 mice. Algal Res. 2021;54. https://doi.org/10.1016/j.algal.2021.102187.
Ma Y, Hu J, Song C, Li P, Cheng Y, Wang Y, et al. Er-xian decoction attenuates ovariectomy-induced osteoporosis by modulating fatty acid metabolism and IGF1/PI3k/AKT signaling pathway. J Ethnopharmacol. 2023;301:115835 https://doi.org/10.1016/j.jep.2022.115835.
Mohamed RA, Yousef YM, El-Tras WF, Khalafallaa MM. Dietary essential oil extract from sweet orange (citrus sinensis) and bitter lemon (citrus limon) peels improved nile tilapia performance and health status. Aquac Res. 2021;52:1463–79. https://doi.org/10.1111/are.15000.
Kim HK, Park Y, Shin M, Kim J, Go G. Betulinic acid suppresses de novo lipogenesis by inhibiting insulin and IGF1 signaling as upstream effectors of the nutrient-sensing mTOR pathway. J Agric Food Chem. 2021;69:12465–73. https://doi.org/10.1021/acs.jafc.1c04797.
Xie W, Zhang S, Lei F, Ouyang X, Du L. ananas comosus l. Leaf phenols and p-coumaric acid regulate liver fat metabolism by upregulating CPT-1 expression. Evid Based Complement Altern Med. 2014;2014:903258. https://doi.org/10.1155/2014/903258.
Zhao Y, Ren J, Chen W, Gao X, Yu H, Li X, et al. Effects of polyphenols on non-alcoholic fatty liver disease: a case study of resveratrol. Food Funct. 2025. https://doi.org/10.1039/d4fo04787g.
Kasprzak-Drozd K, Nizinski P, Kasprzak P, Kondracka A, Oniszczuk T, Rusinek A, et al. Does resveratrol improve metabolic dysfunction-associated steatotic liver disease (MASLD)? Int J Mol Sci. 2024;25:21 https://doi.org/10.3390/ijms25073746.
Chupradit S, Bokov D, Zamanian MY, Heidari M, Hakimizadeh E. Hepatoprotective and therapeutic effects of resveratrol: a focus on anti-inflammatory and antioxidative activities. Fundam Clin Pharm. 2022;36:468–85. https://doi.org/10.1111/fcp.12746.
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1:9 https://doi.org/10.1038/s41698-017-0038-6.
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. 2025;37:12–33. https://doi.org/10.1016/j.cmet.2024.11.002.
Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15o PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54:523–31. https://doi.org/10.2967/jnumed.112.111336.
Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22:219–27. https://doi.org/10.1016/j.cmet.2015.06.022.
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23:1454–65. https://doi.org/10.1038/nm.4429.
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol. 2021;22:393–409. https://doi.org/10.1038/s41580-021-00350-0.
Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. Beta3-adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight. 2021;6. https://doi.org/10.1172/jci.insight.139160.
Kajimura S, Spiegelman BM. Confounding issues in the “humanized” BAT of mice. Nat Metab. 2020;2:303–04. https://doi.org/10.1038/s42255-020-0192-y.
McCarthy M, Brown T, Alarcon A, Williams C, Wu X, Abbott RD, et al. Fat-on-a-chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Eng Part B Rev. 2020;26:586–95. https://doi.org/10.1089/ten.TEB.2019.0261.
Pomyen Y, Wanichthanarak K, Poungsombat P, Fahrmann J, Grapov D, Khoomrung S. Deep metabolome: applications of deep learning in metabolomics. Comput Struct Biotechnol J. 2020;18:2818–25. https://doi.org/10.1016/j.csbj.2020.09.033.
Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18f-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96:192–99. https://doi.org/10.1210/jc.2010-0989.
Acknowledgements
The authors gratefully acknowledge the financial support from the Natural Science Foundation of Guangdong Province (2023A1515010720), Drug Administration of Guangdong Province (2022TDB37) and Guangdong Basic and Applied Basic Research Foundation (2023A1515140045).
Author information
Authors and Affiliations
Contributions
Qi-Cong Chen: Writing, Methodology, Investigation. Wei-Feng Cai: Methodology, Investigation. Qian Ni: Methodology. Song-Xia Lin: Data curation. Cui-Ping Jiang: Review, Supervision. Yan-Kui Yi: Data curation. Li Liu: Data curation. Qiang Liu: Supervision. Chun-Yan Shen: Writing, Review, Supervision, Project administration. All authors have read and approved the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, QC., Cai, WF., Ni, Q. et al. Endocrine regulation of metabolic crosstalk between liver and brown adipose tissue by natural active ingredients. Int J Obes 49, 1688–1703 (2025). https://doi.org/10.1038/s41366-025-01793-7
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41366-025-01793-7