Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Agomelatine alleviates palmitic acid-induced mouse oocyte meiosis defects by restoring mitochondrial function

Abstract

Background/objective

Palmitic acid (PA) is known to be elevated in the follicular fluid of women with obesity, negatively affecting female fertility. However, the mechanism by which PA exposure reduces female fertility is not fully understood, and how it can be treated requires further investigation.

Methods

We first established in vivo and in vitro models of mouse oocyte maturation at high concentrations of PA and determined the effects of treatment with agomelatine (Ago) which is a melatonin receptor agonist with antioxidant properties. We assessed oocyte maturation rates, spindle morphology and chromosome morphology, oxidative stress and apoptosis levels. Lastly, we examined energy levels, mitochondrial function, and mitochondrial synthesis-related protein expression levels.

Results

Our results showed that PA exposure disrupted spindle assembly and chromosome alignment, reduced microtubule stability, and impaired the meiotic maturation of oocytes. PA also disrupted mitochondrial function, leading to decreased ATP production, elevated Reactive Oxygen Species(ROS) levels, oxidative stress, and apoptosis. Remarkably, Ago supplementation promoted oocyte quality by restoring spindle/chromosome conformation, maintaining mitochondrial function, lowering ROS levels, and inhibiting apoptosis.

Conclusions

This study establishes that Ago ameliorates metabolic stress-induced oocyte deterioration through mitochondrial functional restoration, providing mechanistic insights into obesity-associated infertility. Importantly, our study identifies a potentially favorable drug for combating obesity-induced female infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ago alleviates oocyte maturation defects in PA-treated oocytes.
Fig. 2: Ago restores the damaged spindle structure, chromosome arrangement and microtubule stability in PA-treated oocytes.
Fig. 3: Ago attenuates oxidative stress in PA-treated oocytes.
Fig. 4: Ago restores normal energy levels and mitochondrial function in PA-treated oocytes.
Fig. 5: Ago alleviates PA-induced abnormal levels of SIRT1 and PGC1α.
Fig. 6: Protective effect of Ago on PA-treated oocytes in vivo is similar to in vitro results.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files). Detailed individual analysis will be available from the corresponding author on reasonable request.

References

  1. Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. Reproduction. 2010;140:347–64. https://doi.org/10.1530/REP-09-0568.

    Article  CAS  PubMed  Google Scholar 

  2. Si C, Wang N, Wang M, Liu Y, Niu Z, Ding Z. TMT-based proteomic and bioinformatic analyses of human granulosa cells from obese and normal-weight female subjects. Reprod Biol Endocrinol. 2021;19:75. https://doi.org/10.1186/s12958-021-00760-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niu ZH, Lin N, Gu RH, Sun YJ, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocr Metab. 2014;99:E2269–76. https://doi.org/10.1210/jc.2013-3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol. 2011;18:139–43. https://doi.org/10.1097/MED.0b013e3283444b09.

    Article  CAS  Google Scholar 

  5. Palomer X, Pizarro-Delgado J, Barroso E, Vazquez-Carrera M. Palmitic and oleic acid: the Yin and Yang of Fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29:178–90. https://doi.org/10.1016/j.tem.2017.11.009.

    Article  CAS  PubMed  Google Scholar 

  6. Ding Y, Jiang YH, Zhu MJ, Zhu QL, He YQ, Lu Y, et al. Follicular fluid lipidomic profiling reveals potential biomarkers of polycystic ovary syndrome: a pilot study. Front Endocrinol. 2022;13. https://doi.org/10.3389/fendo.2022.960274.

  7. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology. 2010;151:4039–46. https://doi.org/10.1210/en.2010-0098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12:111. https://doi.org/10.1186/1477-7827-12-111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol. 2023;24:27–44. https://doi.org/10.1038/s41580-022-00517-3.

    Article  CAS  PubMed  Google Scholar 

  10. van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.

    Article  CAS  PubMed  Google Scholar 

  11. Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy J. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod. 2017;96:1181–96. https://doi.org/10.1093/biolre/iox046.

    Article  PubMed  Google Scholar 

  12. Itami N, Shirasuna K, Kuwayama T, Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98:644–53. https://doi.org/10.1093/biolre/ioy023.

    Article  PubMed  Google Scholar 

  13. Tang BL. Sirt1 and the mitochondria. Mol Cells. 2016;39:87–95. https://doi.org/10.14348/molcells.2016.2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohamed HE, Abo EDM, Mesbah NM, Saleh SM, Ali AA, Sakr AT. Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced Alzheimer disease in rats. Biomed Pharmacother. 2018;107:1166–74. https://doi.org/10.1016/j.biopha.2018.08.034.

    Article  CAS  PubMed  Google Scholar 

  15. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165838. https://doi.org/10.1016/j.bbadis.2020.165838.

    Article  CAS  PubMed  Google Scholar 

  16. Grindler NM, Moley KH. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod. 2013;19:486–94. https://doi.org/10.1093/molehr/gat026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, et al. Agomelatine: an astounding sui-generis antidepressant?. Curr Mol Pharm. 2022;15:943–61. https://doi.org/10.2174/1874467214666211209142546.

    Article  CAS  Google Scholar 

  18. Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaer E. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharm. 2014;171:3604–19. https://doi.org/10.1111/bph.12720.

    Article  CAS  Google Scholar 

  19. Mairesse J, Silletti V, Laloux C, Zuena AR, Giovine A, Consolazione M, et al. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. Int J Neuropsychopharmacol. 2013;16:323–38. https://doi.org/10.1017/S1461145711001970.

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-SanJuan S, Puentes-Pardo JD, Casado J, Escudero-Feliu J, Khaldy H, Arnedo J, et al. Agomelatine, a melatonin-derived drug, as a new strategy for the treatment of colorectal cancer. Antioxidants. 2023;12. https://doi.org/10.3390/antiox12040926.

  21. Maddukuri RK, Hema C, Sri Tejaswi K, Venkata Mounika M, Vegesana BP. Antidepressant efficacy of Agomelatine: meta-analysis of placebo controlled and active comparator studies. Asian J Psychiatr. 2021;65:102866. https://doi.org/10.1016/j.ajp.2021.102866.

    Article  PubMed  Google Scholar 

  22. Chumboatong W, Thummayot S, Govitrapong P, Tocharus C, Jittiwat J, Tocharus J. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem Int. 2017;102:114–22. https://doi.org/10.1016/j.neuint.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  23. Aguiar CC, Almeida AB, Araujo PV, Vasconcelos GS, Chaves EM, do Vale OC, et al. Effects of agomelatine on oxidative stress in the brain of mice after chemically induced seizures. Cell Mol Neurobiol. 2013;33:825–35. https://doi.org/10.1007/s10571-013-9949-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia P, Liu C, Wu N, Jia D, Sun Y. Agomelatine protects against myocardial ischemia reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Transl Res. 2018;10:1310–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng X, Song Y, Sun Z, Loor JJ, Jiang Q, Gao C, et al. Palmitic acid hinders extracellular traps of neutrophil from postpartum dairy cow in vitro. J Dairy Sci. 2022;105:8286–97. https://doi.org/10.3168/jds.2021-21405.

    Article  CAS  PubMed  Google Scholar 

  26. Marei WFA, Van den Bosch L, Pintelon I, Mohey-Elsaeed O, Bols PEJ, Leroy J. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: a bovine in vitro model. Hum Reprod. 2019;34:1984–98. https://doi.org/10.1093/humrep/dez161.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Pope I, Brennan-Craddock H, Poole E, Langbein W, Borri P, et al. A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum. Reproduction. 2021;163:45–56. https://doi.org/10.1530/REP-21-0332.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang X, Pang Y, Zhao S, Hao H, Zhao X, Du W, et al. Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation. Am J Physiol Endocrinol Metab. 2020;318:E405–16. https://doi.org/10.1152/ajpendo.00057.2019.

    Article  PubMed  Google Scholar 

  29. Guo Y, Sun J, Bu S, Li B, Zhang Q, Wang Q, et al. Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1. Cell Cycle. 2020;19:1677–95. https://doi.org/10.1080/15384101.2020.1767403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He X, Wang D, Zhu F, Jiang Y, Bi J, Lu X, et al. Astaxanthin alleviates palmitic acid-induced hindrance of porcine oocyte maturation. Reprod Domest Anim. 2022;57:1440–9. https://doi.org/10.1111/rda.14221.

    Article  CAS  PubMed  Google Scholar 

  31. Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485–95. https://doi.org/10.1530/rep.1.00735.

    Article  CAS  PubMed  Google Scholar 

  32. Wu T, Dong J, Fu J, Kuang Y, Chen B, Gu H, et al. The mechanism of acentrosomal spindle assembly in human oocytes. Science. 2022;378:eabq7361. https://doi.org/10.1126/science.abq7361.

    Article  CAS  PubMed  Google Scholar 

  33. Palazzo A, Ackerman B, Gundersen GG. Cell biology: tubulin acetylation and cell motility. Nature. 2003;421:230. https://doi.org/10.1038/421230a.

    Article  CAS  PubMed  Google Scholar 

  34. Choi WJ, Banerjee J, Falcone T, Bena J, Agarwal A, Sharma RK. Oxidative stress and tumor necrosis factor-α-induced alterations in metaphase II mouse oocyte spindle structure,. Fertil Steril. 2007;88:1220–31. https://doi.org/10.1016/j.fertnstert.2007.02.067.

    Article  CAS  PubMed  Google Scholar 

  35. Catandi GD, Cheng MH, Chicco AJ, Chen T, Carnevale EM. L-carnitine enhances developmental potential of bovine oocytes matured under high lipid concentrations in vitro. Anim Reprod Sci. 2023;252:107249. https://doi.org/10.1016/j.anireprosci.2023.107249.

    Article  CAS  PubMed  Google Scholar 

  36. Marei WFA, Van Raemdonck G, Baggerman G, Bols PEJ, Leroy J. Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sci Rep. 2019;9:3673. https://doi.org/10.1038/s41598-019-40122-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res. 2018;65:e12514. https://doi.org/10.1111/jpi.12514.

    Article  CAS  PubMed  Google Scholar 

  38. Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium cardiotoxicity is associated with oxidative stress and upregulated TLR-4/NF-kB pathway in rats; protective role of agomelatine. Food Chem Toxicol. 2023;180:114055. https://doi.org/10.1016/j.fct.2023.114055.

    Article  CAS  PubMed  Google Scholar 

  39. de Mello AH, Souza Lda R, Cereja AC, Schraiber Rde B, Florentino D, Martins MM, et al. Effect of subchronic administration of agomelatine on brain energy metabolism and oxidative stress parameters in rats. Psychiatry Clin Neurosci. 2016;70:159–66. https://doi.org/10.1111/pcn.12371.

    Article  CAS  PubMed  Google Scholar 

  40. Sun XC, Wang Y, Zeng HF, Xi YM, Lin H, Han ZY, et al. SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway. Cell Death Discov. 2021;7:304. https://doi.org/10.1038/s41420-021-00695-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krishnaswamy R, Devaraj SN, Padma VV. Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression. Free Radic Biol Med. 2010;49:50–60. https://doi.org/10.1016/j.freeradbiomed.2010.03.016.

    Article  CAS  PubMed  Google Scholar 

  42. Boots CE, Boudoures A, Zhang W, Drury A, Moley KH. Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model. Hum Reprod. 2016;31:2090–7. https://doi.org/10.1093/humrep/dew181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–63. https://doi.org/10.7150/thno.50905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE. 2010;5:e10074. https://doi.org/10.1371/journal.pone.0010074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, et al. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151:5438–45. https://doi.org/10.1210/en.2010-0551.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou YT, Li R, Li SH, Ma X, Liu L, Niu D, et al. Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction. Environ Int. 2022;167:107413. https://doi.org/10.1016/j.envint.2022.107413.

    Article  CAS  PubMed  Google Scholar 

  47. Chang H, Li J, Zhang C, Qian W. Octocrylene exposure impairs mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. Toxicology. 2022;479:153306. https://doi.org/10.1016/j.tox.2022.153306.

    Article  CAS  PubMed  Google Scholar 

  48. Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction. 2019;157:R159–79. https://doi.org/10.1530/REP-18-0431.

    Article  CAS  PubMed  Google Scholar 

  49. Chanmanee T, Wongpun J, Tocharus C, Govitrapong P, Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem Biol Interact. 2022;351:109703. https://doi.org/10.1016/j.cbi.2021.109703.

    Article  CAS  PubMed  Google Scholar 

  50. Luptak M, Fisar Z, Hroudova J. Agomelatine, ketamine and vortioxetine attenuate energy cell metabolism-in vitro study. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms232213824.

  51. Di Emidio G, Falone S, Vitti M, D’Alessandro AM, Vento M, Di Pietro C, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod. 2014;29:2006–17. https://doi.org/10.1093/humrep/deu160.

    Article  CAS  PubMed  Google Scholar 

  52. Dong W, Yan L, Tan Y, Chen S, Zhang K, Gong Z, et al. Melatonin improves mitochondrial function by preventing mitochondrial fission in cadmium-induced rat proximal tubular cell injury via SIRT1-PGC-1alpha pathway activation. Ecotoxicol Environ Saf. 2022;242:113879. https://doi.org/10.1016/j.ecoenv.2022.113879.

    Article  CAS  PubMed  Google Scholar 

  53. Wang P, Zhang S, Lin S, Lv Z. Melatonin ameliorates diabetic hyperglycaemia-induced impairment of Leydig cell steroidogenic function through activation of SIRT1 pathway. Reprod Biol Endocrinol. 2022;20:117. https://doi.org/10.1186/s12958-022-00991-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahmoud AM, Abd El-Ghafar OAM, Alzoghaibi MA, Hassanein EHM. Agomelatine prevents gentamicin nephrotoxicity by attenuating oxidative stress and TLR-4 signaling, and upregulating PPARgamma and SIRT1. Life Sci. 2021;278:119600. https://doi.org/10.1016/j.lfs.2021.119600.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zhen Wang and Lei Chen (Life Science Research Core Services, Northwest A&F University, Yangling, China) for transmission electron microscopy experimental assistance. Mouse and syringe cartoon images used in figure were obtained from Scidraw.io.

Funding

This work was supported by the National Natural Science Foundation of China [grant number U24A20442]; the Key R&D and Transformation program of Qinghai Province [grant number 2023-NK-131, 2022-QY-209].

Author information

Authors and Affiliations

Authors

Contributions

RLZ and JMS conceptualized and designed the study. RLZ, YJT, YBZ and BZJ completed data collection. JWL, CSZ and WJS analysed and interpreted data. RLZ drafted the manuscript. JMS critically revised the manuscript for important intellectual content. CTZ and JMS supervised the study. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jianmin Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were conducted in strict accordance with the China National Guidelines for Ethical Review of Laboratory Animal Welfare (GB/T 35892-2018) and the Regulations for the Administration of Affairs Concerning Experimental Animals (2017 Revision). The experimental protocols were approved by the Animal Care and Use Committee of Northwest A&F University (Protocol number: XN-2023-1207). This study did not involve any human participants or human data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Tang, Y., Zhang, Y. et al. Agomelatine alleviates palmitic acid-induced mouse oocyte meiosis defects by restoring mitochondrial function. Int J Obes 49, 1781–1791 (2025). https://doi.org/10.1038/s41366-025-01825-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-025-01825-2

Search

Quick links