Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Epidemiology and Population Health

Intergenerational associations between maternal body mass index before or during pregnancy with offspring metabolomics: a systematic review and meta-analysis

Abstract

Objectives

In this systematic review, we aimed to investigate the association of maternal body mass index (BMI) before or during pregnancy and the metabolic profiles of offspring in the life course.

Methods

We searched six databases: PubMed, Ovid Embase, MEDLINE, Web of Science, Wan Fang data and China National Knowledge Infrastructure, which yielded 3584 unduplicated articles, and after the full-text screening, 12 observational and three intervention studies met the inclusion criteria. Ten studies assessed pre-pregnancy BMI (ppBMI), whereas the remaining used booking BMI during antenatal visits. Most studies (10 out of 15) examined newborn metabolomics, four in early-mid childhood, and only one in adolescents and adults. The number of mother-offspring pairs ranged from 57 to 10,251, and the age of the population ranged from 15 to 44.

Results

We found that maternal BMI before or during pregnancy was positively associated with adverse offspring metabolomic profiles, characterized by lipids (higher triglyceride, total cholesterol and lower high-density lipoprotein-cholesterol), amino acids (higher branched-chain amino acids and aromatic amino acids), carbohydrate-related metabolites (higher glucose and insulin). Studies on lipids have the most consistent results in both observational and intervention studies. The impact of maternal BMI on offspring metabolomics exerted from birth till adolescence and young adulthood.

Conclusions

Our study highlights a potential intergenerational association between maternal BMI and offspring metabolomic profiles. Interventions on maternal BMI before or during pregnancy showed the potential to reverse the adverse changes in offspring’s metabolic profiles, but long-term health benefits warrant to be verified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of literature search.

Similar content being viewed by others

References

  1. Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol. 2022;12:940937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr. 2019;110:111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patro Golab B, Santos S, Voerman E, Lawlor DA, Jaddoe VWV, Gaillard R, et al. Influence of maternal obesity on the association between common pregnancy complications and risk of childhood obesity: an individual participant data meta-analysis. Lancet Child Adolesc Health. 2018;2:812–21.

    Article  PubMed  Google Scholar 

  4. Reichetzeder C. Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr. 2021;75:1710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hagström H, Simon TG, Roelstraete B, Stephansson O, Söderling J, Ludvigsson JF. Maternal obesity increases the risk and severity of NAFLD in offspring. J Hepatol. 2021;75:1042–8.

    Article  PubMed  Google Scholar 

  6. Iida M, Harada S, Takebayashi T. Application of metabolomics to epidemiological studies of atherosclerosis and cardiovascular disease. J Atheroscler Thromb. 2019;26:747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGarrah RW, Crown SB, Zhang G-F, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res. 2018;122:1238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newgard CB. Metabolomics and metabolic diseases: where do we stand?. Cell Metab. 2017;25:43–56.

    Article  CAS  PubMed  Google Scholar 

  9. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20:353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu H, Jinrui Xiong JL, Yang Y, Chen Z, Liu M, Huang P. Maternal overweight/obesity and its impact on offspring metabolomic profiles. 2023. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023453599.

  11. Kelly AC, Powell TL, Jansson T. Placental function in maternal obesity. Clin Sci. 2020;134:961–84.

    Article  CAS  Google Scholar 

  12. Sterne J, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article  PubMed  Google Scholar 

  13. StataCorp. Stata Statistical Software. College Station, TX: StataCorp LLC; 2023.

    Google Scholar 

  14. Zhang S. Study on the nutritional status of LCPUFA in pre-pregnancy overweight/obesity pregnant women and newborn infants. Anhui Medical University; Anhui: 2019.

  15. Diana LSF, Dylan MW, Antti JK, Pasi S, Mika A-K, George Davey S, et al. Association of pre-pregnancy body mass index with offspring metabolic profile: analyses of 3 European prospective birth cohorts. PLoS Med. 2017;14:e1002376.

    Article  Google Scholar 

  16. Tanvig M, Vinter CA, Jørgensen JS, Wehberg S, Ovesen PG, Beck-Nielsen H, et al. Effects of lifestyle intervention in pregnancy and anthropometrics at birth on offspring metabolic profile at 2.8 years: results from the Lifestyle in Pregnancy and Offspring (LiPO) study. J Clin Endocrinol Metab. 2015;100:175–83.

    Article  CAS  PubMed  Google Scholar 

  17. Grotenfelt NE, Wasenius N, Eriksson JG, Huvinen E, Stach-Lempinen B, Koivusalo SB, et al. Effect of maternal lifestyle intervention on metabolic health and adiposity of offspring: findings from the Finnish Gestational Diabetes Prevention Study (RADIEL). Diab Metab. 2020;46:46–53.

    Article  CAS  Google Scholar 

  18. Patel N, Hellmuth C, Uhl O, Godfrey K, Briley A, Welsh P, et al. Cord metabolic profiles in obese pregnant women: insights into offspring growth and body composition. J Clin Endocrinol Metab. 2018;103:346–55.

    Article  PubMed  Google Scholar 

  19. Shokry E, Marchioro L, Uhl O, Bermúdez MG, García-Santos JA, Segura MT, et al. Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol. 2019;56:421–30.

    Article  PubMed  Google Scholar 

  20. Yuan X, Ma Y, Wang J, Zhao Y, Zheng W, Yang R, et al. The influence of maternal prepregnancy weight and gestational weight gain on the umbilical cord blood metabolome: a case-control study. BMC Pregnancy Childbirth. 2024;24:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lowe WL, Bain JR, Nodzenski M, Reisetter AC, Muehlbauer MJ, Stevens RD. et al. Maternal BMI and glycemia impact thefetal metabolome. Diab Care. 2017;40:902–10.

    Article  CAS  Google Scholar 

  22. Duan Y. The impacts of maternal diabetes combined with obesity on offspring and their related molecular mechanisms. Tianjin Medical University; Tianjin: 2018.

  23. Schlueter RJ, Al-Akwaa FM, Benny PA, Gurary A, Xie G, Jia W, et al. Prepregnant obesity of mothers in a multiethnic cohort is associated with cord blood metabolomic changes in offspring. J Proteome Res. 2020;19:1361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Francis EC, Hunt KJ, Grobman WA, Skupski DW, Mani A, Hinkle SN. Maternal obesity and differences in child urine metabolome. Metabolites. 2024;14:574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uzun ÖÜ, Eneş D, Çınar M, Adugit AG, Uçar B, Duranoğlu A, et al. Cord blood metabolomic profiling in high risk newborns born to diabetic, obese, and overweight mothers: preliminary report. J Pediatr Endocrinol Metab. 2025;38:577–89.

    Article  Google Scholar 

  26. Bucher M, Montaniel KRC, Myatt L, Weintraub S, Tavori H, Maloyan A. Dyslipidemia, insulin resistance, and impairment of placental metabolism in the offspring of obese mothers. J Dev Orig Health Dis. 2021;12:738–47.

    Article  CAS  PubMed  Google Scholar 

  27. Oostvogels AJJM, Stronks K, Roseboom TJ, van der Post JAM, van Eijsden M, Vrijkotte TGM. Maternal prepregnancy BMI, offspring’s early postnatal growth, and metabolic profile at age 5-6 years: the ABCD study. J Clin Endocrinol Metab. 2014;99:3845–54.

    Article  CAS  PubMed  Google Scholar 

  28. Perng W, Rifas-Shiman SL, McCulloch S, Chatzi L, Mantzoros C, Hivert M-F, et al. Associations of cord blood metabolites with perinatal characteristics, newborn anthropometry, and cord blood hormones in project viva. Metabolism. 2017;76:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baas RE, Hutten BA, Henrichs J, Vrijkotte TGM. Associations between maternal lipid blood levels at 13 th week of pregnancy and offspring’s adiposity at age 11-12 years. J Clin Endocrinol Metab. 2022;107:dgac442.

    Article  Google Scholar 

  31. Barbour LA, Hernandez TL. Maternal lipids and fetal overgrowth: making fat from fat. Clin Ther. 2018;40:1638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009;90:1303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kjeldsen EW, Nordestgaard LT, Frikke-Schmidt R. HDL cholesterol and non-cardiovascular disease: a narrative review. Int J Mol Sci. 2021;22:4547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dobiásová M, Frohlich J. Understanding the mechanism of LCAT reaction may help to explain the high predictive value of LDL/HDL cholesterol ratio. Physiol Res. 1998;47:387–97.

    PubMed  Google Scholar 

  35. Stadler J, Poppel MV, Desoye G, Wadsack C, Marsche G. Obesity affects maternal and neonatal HDL metabolism and function. Pharmacology. 2023;379:S60.

    Google Scholar 

  36. Guijarro C, Cosín-Sales J. LDL cholesterol and atherosclerosis: the evidence. Clin Investig Arterioscler. 2021;33:25–32.

    PubMed  Google Scholar 

  37. Avagliano L, Garò C, Marconi AM. Placental amino acids transport in intrauterine growth restriction. J Pregnancy. 2012;2012:972562.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev. 2025;26:e13856.

    Article  CAS  PubMed  Google Scholar 

  39. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10:723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pana MP, Ayotte P, Anassour-Laouan-Sidi E, Suhas E, Gatti CMI, Lucas M. Branched-chain and aromatic amino acids in relation to fat mass and fat-free mass changes among adolescents: a school-based intervention. Metabolites. 2022;12:589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moon JH, Jang HC. Gestational diabetes mellitus: diagnostic approaches and maternal-offspring complications. Diab Metab J. 2022;46:3–14.

    Article  Google Scholar 

  43. Perak AM, Lancki N, Kuang A, Labarthe DR, Allen NB, Shah SH, et al. Associations of maternal cardiovascular health in pregnancy with offspring cardiovascular health in early adolescence. JAMA. 2021;325:658–68.

    Article  PubMed  Google Scholar 

  44. Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev. 2021;79:709–2.

    Article  PubMed  Google Scholar 

  45. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6:e1000097. https://doi.org/10.1371/journal.pmed1000097.

Download references

Funding

ML was funded by the Science and Technology Department of Jiangxi Province, the Natural Science Foundation of Jiangxi Province (20232BAB216103) and the Chunhui Program, Department of International Cooperation and Exchange, Ministry of Education (HZKY20220393), Nanchang University Youth Talent Cultivation Innovation Fund Project (XX202506050054) and the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

ML proposed the research idea, HH drafted the study proposal; JL, JX, ZC and HH conducted literature screening. YY and YZ drafted the tables, HH drafted the manuscript and RD ran the meta-analysis. ML, LL, YZ and PH reviewed and revised the manuscript. HH, YY and JL helped with reference collation. YZ helped with the paper submission. All authors approved the final publication of the manuscript.

Corresponding authors

Correspondence to Ling-Jun Li or Mengjiao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Yang, Y., Zhang, Y. et al. Intergenerational associations between maternal body mass index before or during pregnancy with offspring metabolomics: a systematic review and meta-analysis. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01840-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-025-01840-3

Search

Quick links